/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "./securec.h" #include "minddata/dataset/core/client.h" #include "minddata/dataset/core/data_type.h" #include "minddata/dataset/core/tensor_shape.h" #include "minddata/dataset/engine/data_schema.h" #include "common/common.h" #include "utils/ms_utils.h" #include "gtest/gtest.h" #include "utils/log_adapter.h" namespace common = mindspore::common; using namespace mindspore::dataset; using mindspore::MsLogLevel::INFO; using mindspore::ExceptionType::NoExceptionType; using mindspore::LogStream; class MindDataTestTensorShape : public UT::Common { public: MindDataTestTensorShape() = default; }; TEST_F(MindDataTestTensorShape, TestBasics) { std::vector vec = {4, 5, 6}; TensorShape t(vec); ASSERT_EQ(t.Rank(), 3); ASSERT_EQ(t.Size(), 3); ASSERT_EQ(t.known(), true); ASSERT_EQ(t.empty(), false); ASSERT_EQ(t.NumOfElements(), 120); for (dsize_t i = 0; i < t.Rank(); i++) { ASSERT_EQ(t[i], vec[i]); } ASSERT_EQ(vec, t.AsVector()); ASSERT_EQ(t.IsValidIndex({0, 0, 0}), true); ASSERT_EQ(t.IsValidIndex({3, 4, 5}), true); ASSERT_EQ(t.IsValidIndex({3, 4, 6}), false); ASSERT_EQ(t.IsValidIndex({4, 5, 6}), false); ASSERT_EQ(t.IsValidIndex({4, 5, 6}), false); ASSERT_EQ(t.IsValidIndex({3, 3}), false); ASSERT_EQ(t.IsValidIndex({-3, -3, -1}), false); ASSERT_EQ(t.IsValidIndex({-1, 4, 5}), false); TensorShape t2({4, 5, 6}); ASSERT_EQ(t, t2); TensorShape t3({0}); ASSERT_EQ(t3.Size(), 1); ASSERT_EQ(t3.NumOfElements(), 0); t3 = TensorShape({0, 5, 6}); ASSERT_EQ(t3.Size(), 3); ASSERT_EQ(t3.NumOfElements(), 0); } TEST_F(MindDataTestTensorShape, TestScalars) { TensorShape t = TensorShape::CreateScalar(); ASSERT_EQ(t.Rank(), 0); ASSERT_EQ(t.AsVector(), std::vector{}); ASSERT_EQ(t.known(), true); TensorShape t2(std::vector{}); ASSERT_EQ(t, t2); ASSERT_EQ(t.NumOfElements(), 1); } TEST_F(MindDataTestTensorShape, TestDims) { TensorShape t = TensorShape::CreateScalar(); t = t.AppendDim(1); t = t.AppendDim(2); t = t.AppendDim(3); ASSERT_EQ(t, TensorShape({1, 2, 3})); TensorShape t2 = TensorShape::CreateScalar(); t2 = t2.PrependDim(3); t2 = t2.PrependDim(2); t2 = t2.PrependDim(1); ASSERT_EQ(t, t2); TensorShape t3({4, 5, 6}); t3 = t3.InsertDim(0, 1); // 1, 4, 5, 6 t3 = t3.InsertDim(2, 2); // 1, 4, 2, 5, 6 t3 = t3.InsertDim(4, 3); // 1, 4, 2, 5, 3, 6 ASSERT_EQ(t3, TensorShape({1, 4, 2, 5, 3, 6})); } TEST_F(MindDataTestTensorShape, TestUnknown) { TensorShape t1({-1, 5, 6}); ASSERT_EQ(t1.AsVector(), std::vector({-1, 5, 6})); ASSERT_EQ(t1.known(), false); TensorShape t2({5, 6}); t2 = t2.PrependDim(-1); ASSERT_EQ(t1, t2); TensorShape t3 = TensorShape::CreateUnknownRankShape(); ASSERT_EQ(t3.known(), false); ASSERT_EQ(t3.Size(), 0); TensorShape t4 = TensorShape::CreateUnknownShapeWithRank(3); ASSERT_EQ(t4, TensorShape({-1, -1, -1})); } // Test materializing a TensorShape by calling method on a given column descriptor TEST_F(MindDataTestTensorShape, TestColDescriptor) { int32_t rank = 0; // not used int32_t num_elements = 0; // Has no shape ColDescriptor c1("col1", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank); TensorShape generated_shape1 = TensorShape::CreateUnknownRankShape(); num_elements = 4; Status rc = c1.MaterializeTensorShape(num_elements, &generated_shape1); ASSERT_TRUE(rc.IsOk()); MS_LOG(INFO) << "generated_shape1: " << common::SafeCStr(generated_shape1.ToString()) << "."; ASSERT_EQ(TensorShape({4}),generated_shape1); // Has shape i.e. <*> TensorShape requested_shape2({TensorShape::kDimUnknown}); ColDescriptor c2("col2", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape2); TensorShape generated_shape2 = TensorShape::CreateUnknownRankShape(); num_elements = 5; rc = c2.MaterializeTensorShape(num_elements, &generated_shape2); ASSERT_TRUE(rc.IsOk()); MS_LOG(INFO) << "generated_shape2: " << common::SafeCStr(generated_shape2.ToString()) << "."; ASSERT_EQ(TensorShape({5}),generated_shape2); // Compute unknown dimension <*,4> TensorShape requested_shape3({TensorShape::kDimUnknown, 4}); ColDescriptor c3("col3", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape3); TensorShape generated_shape3 = TensorShape::CreateUnknownRankShape(); num_elements = 12; rc = c3.MaterializeTensorShape(num_elements, &generated_shape3); ASSERT_TRUE(rc.IsOk()); MS_LOG(INFO) << "generated_shape3: " << common::SafeCStr(generated_shape3.ToString()) << "."; ASSERT_EQ(TensorShape({3,4}),generated_shape3); // Compute unknown dimension <3,*,4> TensorShape requested_shape4({3, TensorShape::kDimUnknown, 4}); ColDescriptor c4("col4", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape4); TensorShape generated_shape4 = TensorShape::CreateUnknownRankShape(); num_elements = 24; rc = c4.MaterializeTensorShape(num_elements, &generated_shape4); ASSERT_TRUE(rc.IsOk()); MS_LOG(INFO) << "generated_shape4: " << common::SafeCStr(generated_shape4.ToString()) << "."; ASSERT_EQ(TensorShape({3,2,4}),generated_shape4); // requested and generated should be the same! <2,3,4> TensorShape requested_shape5({2, 3, 4}); ColDescriptor c5("col5", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape5); TensorShape generated_shape5 = TensorShape::CreateUnknownRankShape(); num_elements = 24; rc = c5.MaterializeTensorShape(num_elements, &generated_shape5); ASSERT_TRUE(rc.IsOk()); MS_LOG(INFO) << "generated_shape5: " << common::SafeCStr(generated_shape5.ToString()) << "."; ASSERT_EQ(requested_shape5,generated_shape5); // expect fail due to multiple unknown dimensions TensorShape requested_shape6({2, TensorShape::kDimUnknown, TensorShape::kDimUnknown}); ColDescriptor c6("col6", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape6); TensorShape generated_shape6 = TensorShape::CreateUnknownRankShape(); num_elements = 24; rc = c6.MaterializeTensorShape(num_elements, &generated_shape6); ASSERT_FALSE(rc.IsOk()); // expect fail because the requested shape element count does not match with num elements TensorShape requested_shape7({2, 3, 3}); ColDescriptor c7("col7", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape7); TensorShape generated_shape7 = TensorShape::CreateUnknownRankShape(); num_elements = 24; rc = c7.MaterializeTensorShape(num_elements, &generated_shape7); ASSERT_FALSE(rc.IsOk()); } TEST_F(MindDataTestTensorShape, TestInvalid) { ASSERT_EQ(TensorShape({2147483648}), TensorShape::CreateUnknownRankShape()); ASSERT_EQ(TensorShape({kDeMaxDim - 1, kDeMaxDim - 1, kDeMaxDim - 1}), TensorShape::CreateUnknownRankShape()); }