# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test ops """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.ops import operations as P from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception class ExpandDimsNet(nn.Cell): def __init__(self, axis): super(ExpandDimsNet, self).__init__() self.axis = axis self.op = P.ExpandDims() def construct(self, x): return self.op(x, self.axis) class IsInstanceNet(nn.Cell): def __init__(self, inst): super(IsInstanceNet, self).__init__() self.inst = inst self.op = P.IsInstance() def construct(self, t): return self.op(self.inst, t) class ReshapeNet(nn.Cell): def __init__(self, shape): super(ReshapeNet, self).__init__() self.shape = shape self.op = P.Reshape() def construct(self, x): return self.op(x, self.shape) raise_set = [ # input is scala, not Tensor ('ExpandDims0', { 'block': (P.ExpandDims(), {'exception': TypeError, 'error_keywords': ['ExpandDims']}), 'desc_inputs': [5.0, 1], 'skip': ['backward']}), # axis is as a parameter ('ExpandDims1', { 'block': (P.ExpandDims(), {'exception': TypeError, 'error_keywords': ['ExpandDims']}), 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), 1], 'skip': ['backward']}), # axis as an attribute, but less then lower limit ('ExpandDims2', { 'block': (ExpandDimsNet(-4), {'exception': ValueError, 'error_keywords': ['ExpandDims']}), 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))], 'skip': ['backward']}), # axis as an attribute, but greater then upper limit ('ExpandDims3', { 'block': (ExpandDimsNet(3), {'exception': ValueError, 'error_keywords': ['ExpandDims']}), 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))], 'skip': ['backward']}), # input is scala, not Tensor ('DType0', { 'block': (P.DType(), {'exception': TypeError, 'error_keywords': ['DType']}), 'desc_inputs': [5.0], 'skip': ['backward']}), # input x scala, not Tensor ('SameTypeShape0', { 'block': (P.SameTypeShape(), {'exception': TypeError, 'error_keywords': ['SameTypeShape']}), 'desc_inputs': [5.0, Tensor(np.ones([3, 4]).astype(np.float32))], 'skip': ['backward']}), # input y scala, not Tensor ('SameTypeShape1', { 'block': (P.SameTypeShape(), {'exception': TypeError, 'error_keywords': ['SameTypeShape']}), 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), 5.0], 'skip': ['backward']}), # type of x and y not match ('SameTypeShape2', { 'block': (P.SameTypeShape(), {'exception': TypeError, 'error_keywords': ['SameTypeShape']}), 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 4]).astype(np.int32))], 'skip': ['backward']}), # shape of x and y not match ('SameTypeShape3', { 'block': (P.SameTypeShape(), {'exception': ValueError, 'error_keywords': ['SameTypeShape']}), 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), Tensor(np.ones([3, 3]).astype(np.float32))], 'skip': ['backward']}), # sub_type is None ('IsSubClass0', { 'block': (P.IsSubClass(), {'exception': TypeError, 'error_keywords': ['IsSubClass']}), 'desc_inputs': [None, mstype.number], 'skip': ['backward']}), # type_ is None ('IsSubClass1', { 'block': (P.IsSubClass(), {'exception': TypeError, 'error_keywords': ['IsSubClass']}), 'desc_inputs': [mstype.number, None], 'skip': ['backward']}), # t is not mstype.Type ('IsInstance1', { 'block': (IsInstanceNet(5.0), {'exception': TypeError, 'error_keywords': ['IsInstance']}), 'desc_inputs': [None], 'skip': ['backward']}), # input x is scalar, not Tensor ('Reshape0', { 'block': (P.Reshape(), {'exception': TypeError, 'error_keywords': ['Reshape']}), 'desc_inputs': [5.0, (1, 2)], 'skip': ['backward']}), # input shape is var ('Reshape1', { 'block': (P.Reshape(), {'exception': TypeError, 'error_keywords': ['Reshape']}), 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32)), (2, 3, 2)], 'skip': ['backward']}), # element of shape is not int ('Reshape3', { 'block': (ReshapeNet((2, 3.0, 2)), {'exception': TypeError, 'error_keywords': ['Reshape']}), 'desc_inputs': [Tensor(np.ones([3, 4]).astype(np.float32))], 'skip': ['backward']}), ] @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception) def test_check_exception(): return raise_set