# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test layer switch""" import numpy as np import mindspore from mindspore import nn from mindspore import Tensor from mindspore import context from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE) class Layer1(nn.Cell): def __init__(self): super(Layer1, self).__init__() self.net = nn.Conv2d(3, 1, 3, pad_mode='same') self.pad = nn.Pad( paddings=((0, 0), (0, 2), (0, 0), (0, 0)), mode="CONSTANT") def construct(self, x): y = self.net(x) return self.pad(y) class Layer2(nn.Cell): def __init__(self): super(Layer2, self).__init__() self.net = nn.Conv2d(3, 1, 7, pad_mode='same') self.pad = nn.Pad( paddings=((0, 0), (0, 2), (0, 0), (0, 0)), mode="CONSTANT") def construct(self, x): y = self.net(x) return self.pad(y) class Layer3(nn.Cell): def __init__(self): super(Layer3, self).__init__() self.net = nn.Conv2d(3, 3, 3, pad_mode='same') def construct(self, x): return self.net(x) class SwitchNet(nn.Cell): def __init__(self): super(SwitchNet, self).__init__() self.layer1 = Layer1() self.layer2 = Layer2() self.layer3 = Layer3() self.layers = (self.layer1, self.layer2, self.layer3) self.fill = P.Fill() def construct(self, x, index): y = self.layers[index](x) return y class MySwitchNet(nn.Cell): def __init__(self): super(MySwitchNet, self).__init__() self.layer1 = Layer1() self.layer2 = Layer2() self.layer3 = Layer3() self.layers = (self.layer1, self.layer2, self.layer3) self.fill = P.Fill() def construct(self, x, index): y = self.layers[0](x) for i in range(len(self.layers)): if i == index: y = self.layers[i](x) return y def test_layer_switch(): net = MySwitchNet() x = Tensor(np.ones((3, 3, 24, 24)), mindspore.float32) index = Tensor(0, dtype=mindspore.int32) net(x, index)