# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ test_training """ import os from mindspore import Model, context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel from src.callbacks import LossCallBack from src.datasets import create_dataset from src.config import WideDeepConfig context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True) def get_WideDeep_net(configure): WideDeep_net = WideDeepModel(configure) loss_net = NetWithLossClass(WideDeep_net, configure) train_net = TrainStepWrap(loss_net) eval_net = PredictWithSigmoid(WideDeep_net) return train_net, eval_net class ModelBuilder(): """ Build the model. """ def __init__(self): pass def get_hook(self): pass def get_train_hook(self): hooks = [] callback = LossCallBack() hooks.append(callback) if int(os.getenv('DEVICE_ID')) == 0: pass return hooks def get_net(self, configure): return get_WideDeep_net(configure) def test_train(configure): """ test_train """ data_path = configure.data_path batch_size = configure.batch_size epochs = configure.epochs ds_train = create_dataset(data_path, train_mode=True, epochs=epochs, batch_size=batch_size) print("ds_train.size: {}".format(ds_train.get_dataset_size())) net_builder = ModelBuilder() train_net, _ = net_builder.get_net(configure) train_net.set_train() model = Model(train_net) callback = LossCallBack(config=configure) ckptconfig = CheckpointConfig(save_checkpoint_steps=1, keep_checkpoint_max=5) ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', directory=configure.ckpt_path, config=ckptconfig) model.train(epochs, ds_train, callbacks=[TimeMonitor(ds_train.get_dataset_size()), callback, ckpoint_cb]) if __name__ == "__main__": config = WideDeepConfig() config.argparse_init() test_train(config)