# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor import mindspore.nn as nn from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, axis=0, out_nums=1): super(Net, self).__init__() self.split = P.Split(axis, out_nums) def construct(self, x): return self.split(x) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_split(): x = np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32) split_op = Net(0, 3) outputs = split_op(Tensor(x)) for i, out in enumerate(outputs): assert (out.asnumpy() == x[i]).all() def test_split_4d(): x_np = np.random.randn(2, 6, 4, 4).astype(np.float32) y = np.split(x_np, 3, axis=1) split_op = Net(1, 3) outputs = split_op(Tensor(x_np)) for i, out in enumerate(outputs): assert (out.asnumpy() == y[i]).all()