# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test nn pad """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops.composite import GradOperation class Net(nn.Cell): def __init__(self, raw_paddings, mode): super(Net, self).__init__() self.pad = nn.Pad(raw_paddings, mode=mode) @ms_function def construct(self, x): return self.pad(x) class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network @ms_function def construct(self, x, grads): return self.grad(self.network)(x, grads) def test_pad_train(): mode = 'CONSTANT' x = np.random.random(size=(2, 3)).astype(np.float32) raw_paddings = ((1, 1), (2, 2)) grads = np.random.random(size=(4, 7)).astype(np.float32) grad = Grad(Net(raw_paddings, mode)) output = grad(Tensor(x), Tensor(grads)) print("=================output====================") print(output) def test_pad_infer(): mode = 'CONSTANT' x = np.random.random(size=(2, 3)).astype(np.float32) raw_paddings = ((1, 1), (2, 2)) net = Net(raw_paddings, mode) output = net(Tensor(x)) print("=================output====================") print(output)