# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Parameter, Tensor, context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return grad_all(self.network)(x, y, b) def compile_net(net, x, y, b): net.set_auto_parallel() net.set_train() _executor.compile(net, x, y, b) def test_matmul_sub(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.sub = P.Sub().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.sub(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_add(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.add = P.Add().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.add(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_mul(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.mul = P.Mul().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.mul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_mod(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.mod = P.Mod().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.mod(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_floormod(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.floormod = P.FloorMod().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.floormod(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_atan2(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.atan2 = P.Atan2().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.atan2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_divNoNan(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.divNoNan = P.DivNoNan().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.divNoNan(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_logicaland(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.equal = P.Equal().shard(strategy2) self.notequal = P.NotEqual().shard(strategy2) self.logical = P.LogicalAnd().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out1 = self.equal(out, b) out = self.matmul(x, y) out2 = self.notequal(out, b) out = self.logical(out1, out2) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_logicalor(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.equal = P.Equal().shard(strategy2) self.notequal = P.NotEqual().shard(strategy2) self.logical = P.LogicalOr().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out1 = self.equal(out, b) out = self.matmul(x, y) out2 = self.notequal(out, b) out = self.logical(out1, out2) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_div(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.div = P.Div().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.div(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_add_broadcast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.add = P.Add().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.add(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (2,)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_add_broadcast2(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.add = P.Add().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.add(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), (4, 1)) strategy2 = ((4, 1), (1, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 1]), dtype=ms.float32) b = Tensor(np.ones([1, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_sub_broadcast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.sub = P.Sub().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.sub(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (2,)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_sub_broadcast2(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.sub = P.Sub().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.sub(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), (4, 1)) strategy2 = ((4, 1), (1, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 1]), dtype=ms.float32) b = Tensor(np.ones([1, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_mul_broadcast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.mul = P.Mul().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.mul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (2,)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_mul_broadcast2(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.mul = P.Mul().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.mul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), (4, 1)) strategy2 = ((4, 1), (1, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 1]), dtype=ms.float32) b = Tensor(np.ones([1, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_div_broadcast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.div = P.Div().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.div(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (2,)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_div_broadcast2(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.div = P.Div().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.div(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), (4, 1)) strategy2 = ((4, 1), (1, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 1]), dtype=ms.float32) b = Tensor(np.ones([1, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_greater_broadcast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.greater = P.Greater().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.greater(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (2,)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_greater_broadcast2(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.greater = P.Greater().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.greater(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), (4, 1)) strategy2 = ((4, 1), (1, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 1]), dtype=ms.float32) b = Tensor(np.ones([1, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_floordiv(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.floordiv = P.FloorDiv().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.floordiv(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_floordiv_broadcast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.floordiv = P.FloorDiv().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.floordiv(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (2,)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_floordiv_broadcast2(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.floordiv = P.FloorDiv().shard(strategy2) def construct(self, x, y, b): out = self.matmul(x, y) out = self.floordiv(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), (4, 1)) strategy2 = ((4, 1), (1, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 1]), dtype=ms.float32) b = Tensor(np.ones([1, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_assign_sub(): class Net(nn.Cell): def __init__(self): super().__init__() self.assign_sub = P.AssignSub() self.mul = P.Mul() self.mul_weight = Parameter(Tensor(np.full([128, 32], 0.5, dtype=np.float32)), name="mul_weight") self.assignsub_weight = Parameter(Tensor(np.full([128, 32], 1.1, dtype=np.float32)), name="assignsub_weight") def construct(self, x): out = self.mul(x, self.mul_weight) out = self.assign_sub(self.assignsub_weight, out) return out class SubNetWithLoss(nn.Cell): def __init__(self, network): super(SubNetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x): predict = self.network(x,) return self.loss(predict) class SubGradWrap(nn.Cell): def __init__(self, network): super(SubGradWrap, self).__init__() self.network = network def construct(self, x): return grad_all(self.network)(x) def compile_sub_net(net, x): net.set_auto_parallel() net.set_train() _executor.compile(net, x) context.set_auto_parallel_context(device_num=64, global_rank=15) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net = SubGradWrap(SubNetWithLoss(Net())) x = Tensor(np.ones([128, 32]), dtype=ms.float32) compile_sub_net(net, x) def test_assign_add(): class Net(nn.Cell): def __init__(self): super().__init__() self.assign_sub = P.AssignAdd() self.mul = P.Mul() self.mul_weight = Parameter(Tensor(np.full([128, 32], 0.5, dtype=np.float32)), name="mul_weight") self.assignsub_weight = Parameter(Tensor(np.full([128, 32], 1.1, dtype=np.float32)), name="assignsub_weight") def construct(self, x): out = self.mul(x, self.mul_weight) out = self.assign_sub(self.assignsub_weight, out) return out class SubNetWithLoss(nn.Cell): def __init__(self, network): super(SubNetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x): predict = self.network(x,) return self.loss(predict) class SubGradWrap(nn.Cell): def __init__(self, network): super(SubGradWrap, self).__init__() self.network = network def construct(self, x): return grad_all(self.network)(x) def compile_sub_net(net, x): net.set_auto_parallel() net.set_train() _executor.compile(net, x) context.set_auto_parallel_context(device_num=64, global_rank=15) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net = SubGradWrap(SubNetWithLoss(Net())) x = Tensor(np.ones([128, 32]), dtype=ms.float32) compile_sub_net(net, x) def test_assign(): class Net(nn.Cell): def __init__(self): super().__init__() self.assign_sub = P.Assign() self.mul = P.Mul() self.mul_weight = Parameter(Tensor(np.full([128, 32], 0.5, dtype=np.float32)), name="mul_weight") self.assignsub_weight = Parameter(Tensor(np.full([128, 32], 1.1, dtype=np.float32)), name="assignsub_weight") def construct(self, x): out = self.mul(x, self.mul_weight) out = self.assign_sub(self.assignsub_weight, out) return out class SubNetWithLoss(nn.Cell): def __init__(self, network): super(SubNetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x): predict = self.network(x,) return self.loss(predict) class SubGradWrap(nn.Cell): def __init__(self, network): super(SubGradWrap, self).__init__() self.network = network def construct(self, x): return grad_all(self.network)(x) def compile_sub_net(net, x): net.set_auto_parallel() net.set_train() _executor.compile(net, x) context.set_auto_parallel_context(device_num=64, global_rank=15) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net = SubGradWrap(SubNetWithLoss(Net())) x = Tensor(np.ones([128, 32]), dtype=ms.float32) compile_sub_net(net, x)