# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """LeNet test.""" import numpy as np from lenet import LeNet5 import mindspore.nn as nn import mindspore.ops.composite as C from mindspore import Tensor from mindspore import context from mindspore.common.api import _executor context.set_context(mode=context.GRAPH_MODE) grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True) batch_size = 1 channel = 1 height = 32 weight = 32 num_class = 10 class LeNetGrad(nn.Cell): """Backward of LeNet""" def __init__(self, network): super(LeNetGrad, self).__init__() self.grad_op = grad_all_with_sens self.network = network def construct(self, x, sens): grad_op = self.grad_op(self.network)(x, sens) return grad_op def test_compile(): """Compile forward graph""" net = LeNet(num_class=num_class) np.random.seed(7) inp = Tensor(np.array(np.random.randn(batch_size, channel, height, weight) * 3, np.float32)) _executor.compile(net, inp) def test_compile_grad(): """Compile forward and backward graph""" net = LeNet5(num_class=num_class) inp = Tensor(np.array(np.random.randn(batch_size, channel, height, weight) * 3, np.float32)) sens = Tensor(np.ones([batch_size, num_class]).astype(np.float32)) grad_op = LeNetGrad(net) _executor.compile(grad_op, inp, sens)