# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import numpy as np import mindspore as ms import mindspore.communication.management as distributedTool import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.nn import Cell from mindspore.ops import operations as P device_num = 2 device_id = int(os.getenv('DEVICE_ID')) rank_id = 0 def setup_module(): global device_num global rank_id np.random.seed(0) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(device_id=device_id) distributedTool.init() device_num = distributedTool.get_group_size() rank_id = distributedTool.get_rank() context.set_auto_parallel_context(device_num=device_num, global_rank=rank_id) def teardown_module(): distributedTool.release() class Onehot(Cell): def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, strategy=None): super(Onehot, self).__init__() trans_stra = None if strategy: trans_stra = (strategy[0],) self.onehot = P.OneHot().shard(strategy=strategy) self.depth = depth self.on_value = Tensor(on_value, ms.float32) self.off_value = Tensor(off_value, ms.float32) self.transpose = P.Transpose().shard(strategy=trans_stra) self.sub = P.Sub().shard(strategy=((1, 1), (1, 1))) self.axis = axis def construct(self, input_, indices): x = self.onehot(indices, self.depth, self.on_value, self.off_value) x = self.transpose(x, (1, 0)) x = self.sub(input_, x) return x class DataGenerator(): def get_parallel_blocks(self, input_, strategy): blocks = [input_] i = 0 for stra in strategy: temp = [] while blocks: block = blocks.pop(0) temp.extend(np.split(block, stra, axis=i)) blocks.extend(temp) i += 1 return blocks def generate_data(self, shape): data = np.random.rand(*shape) return data def input_data(self, shape): data = (self.generate_data(shape) * 2).astype(np.float32) stra = [1] * len(shape) stra[0] = device_num datas = self.get_parallel_blocks(data, stra) return Tensor(data), Tensor(datas[rank_id]) def label_data(self, shape, classes): data = (self.generate_data(shape) * (classes - 1)).astype(np.int32) stra = [1] * len(shape) stra[0] = device_num datas = self.get_parallel_blocks(data, stra) return Tensor(data), Tensor(datas[rank_id]) class OneHotFactory: def __init__(self, batch_size, classes, on_value=1.0, off_value=0.0, axis=None, strategy=None): data_gen = DataGenerator() self.input_full, self.input_part = data_gen.input_data((classes, batch_size)) self.label_full, self.label_part = data_gen.label_data((batch_size,), classes) self.depth = classes self.on_value = on_value self.off_value = off_value self.axis = axis self.strategy = strategy def forward_mindspore_single_impl(self): net = Onehot(axis=self.axis, depth=self.depth, on_value=self.on_value, off_value=self.off_value) out = net(self.input_full, self.label_full) return out def forward_mindspore_parallel_impl(self): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net = Onehot(axis=self.axis, depth=self.depth, on_value=self.on_value, off_value=self.off_value, strategy=self.strategy) out = net.compile_and_run(self.input_full, self.label_full) return out def forward_cmp(self): out_mindspore_single = self.forward_mindspore_single_impl().asnumpy() context.reset_auto_parallel_context() out_mindspore_parallel = self.forward_mindspore_parallel_impl().asnumpy() context.reset_auto_parallel_context() assert np.allclose(out_mindspore_single, out_mindspore_parallel, 0.0001, 0.0001) def test_reid_onehot_forward_int32_128_depth1024_model_parallel(): fact = OneHotFactory(batch_size=128, classes=1024, on_value=1.000000, off_value=0.000000, axis=-1, strategy=((1, device_num), (), ())) fact.forward_cmp() def test_reid_onehot_forward_int32_1024_depth128_model_parallel(): fact = OneHotFactory(batch_size=1024, classes=128, on_value=1.000000, off_value=0.000000, axis=-1, strategy=((1, device_num), (), ())) fact.forward_cmp()