import os import pytest import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as CT import mindspore.dataset.vision.c_transforms as CV import mindspore.nn as nn from mindspore import ParameterTuple from mindspore import context from mindspore.common import dtype as mstype from mindspore.common.initializer import Normal from mindspore.dataset.vision import Inter from mindspore.nn import Cell from mindspore.ops import composite as C from mindspore.ops import functional as F from mindspore.ops import operations as P from mindspore.train.dataset_helper import DatasetHelper from mindspore.train.serialization import save_checkpoint _sum_op = C.MultitypeFuncGraph("grad_sum_op") _clear_op = C.MultitypeFuncGraph("clear_op") @_sum_op.register("Tensor", "Tensor") def _cumulative_gard(grad_sum, grad): """Apply gard sum to cumulative gradient.""" add = P.AssignAdd() return add(grad_sum, grad) @_clear_op.register("Tensor", "Tensor") def _clear_grad_sum(grad_sum, zero): """Apply zero to clear grad_sum.""" success = True success = F.depend(success, F.assign(grad_sum, zero)) return success class LeNet5(nn.Cell): """ Lenet network Args: num_class (int): Num classes. Default: 10. num_channel (int): Num channels. Default: 1. Returns: Tensor, output tensor Examples: >>> LeNet(num_class=10) """ def __init__(self, num_class=10, num_channel=1): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02)) self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02)) self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02)) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() def construct(self, x): x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv2(x))) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x class TrainForwardBackward(Cell): def __init__(self, network, optimizer, grad_sum, sens=1.0): super(TrainForwardBackward, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad_sum = grad_sum self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.sens = sens self.hyper_map = C.HyperMap() def construct(self, *inputs): weights = self.weights loss = self.network(*inputs) sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) grads = self.grad(self.network, weights)(*inputs, sens) return F.depend(loss, self.hyper_map(F.partial(_sum_op), self.grad_sum, grads)) class TrainOptim(Cell): def __init__(self, optimizer, grad_sum): super(TrainOptim, self).__init__(auto_prefix=False) self.optimizer = optimizer self.grad_sum = grad_sum def construct(self): return self.optimizer(self.grad_sum) class TrainClear(Cell): def __init__(self, grad_sum, zeros): super(TrainClear, self).__init__(auto_prefix=False) self.grad_sum = grad_sum self.zeros = zeros self.hyper_map = C.HyperMap() def construct(self): seccess = self.hyper_map(F.partial(_clear_op), self.grad_sum, self.zeros) return seccess class GradientAccumulation: def __init__(self, network, loss_fn, optimizer): self._network = network self._loss_fn = loss_fn self._optimizer = optimizer params = self._optimizer.parameters self._grad_sum = params.clone(prefix="grad_sum", init='zeros') self._zeros = params.clone(prefix="zeros", init='zeros') self._train_forward_backward = self._build_train_forward_backward_network() self._train_optim = self._build_train_optim() self._train_clear = self._build_train_clear() def _build_train_forward_backward_network(self): """Build forward and backward network""" network = self._network network = nn.WithLossCell(network, self._loss_fn) loss_scale = 1.0 network = TrainForwardBackward(network, self._optimizer, self._grad_sum, loss_scale).set_train() return network def _build_train_optim(self): """Build optimizer network""" network = TrainOptim(self._optimizer, self._grad_sum).set_train() return network def _build_train_clear(self): """Build clear network""" network = TrainClear(self._grad_sum, self._zeros).set_train() return network def train_process(self, epoch, train_dataset, mini_steps=None): """ Training process. The data would be passed to network directly. """ dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=False, epoch_num=epoch) for i in range(epoch): step = 0 for k, next_element in enumerate(dataset_helper): loss = self._train_forward_backward(*next_element) if (k + 1) % mini_steps == 0: step += 1 print("epoch:", i + 1, "step:", step, "loss is ", loss) self._train_optim() self._train_clear() train_dataset.reset() save_checkpoint(self._train_forward_backward, "gradient_accumulation.ckpt",) def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1): """ create dataset for train or test """ # define dataset mnist_ds = ds.MnistDataset(data_path) resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 rescale_nml = 1 / 0.3081 shift_nml = -1 * 0.1307 / 0.3081 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() type_cast_op = CT.TypeCast(mstype.int32) # apply map operations on images mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_gradient_accumulation(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") ds_train = create_dataset(os.path.join("/home/workspace/mindspore_dataset/mnist", "train"), 32) network = LeNet5(10) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) model = GradientAccumulation(network, net_loss, net_opt) print("============== Starting Training ==============") model.train_process(2, ds_train, mini_steps=4)