# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import mindspore.context as context import mindspore.nn as nn from mindspore.common.api import ms_function from mindspore.ops import operations as P context.set_context(device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.matmul = P.MatMul(transpose_b=True) self.bias_add = P.BiasAdd() @ms_function def construct(self, x, w, b): return self.bias_add(self.matmul(x, w), b) # def test_net(): # x = np.random.randn(32, 2048).astype(np.float16) # w = np.random.randn(1001, 2048).astype(np.float16) # b = np.random.randn(1001).astype(np.float16) # FullConnection = Net() # output = FullConnection(Tensor(x), Tensor(w), Tensor(b)) # print(output.asnumpy())