# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.ops import operations as P @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_roi_align(): def roi_align_case(data_type): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = Tensor(np.array([[ [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18], [19, 20, 21, 22, 23, 24], [25, 26, 27, 28, 29, 30], [31, 32, 33, 34, 35, 36]] ]], data_type)) # test case 1 rois = Tensor(np.array([[0, -2.0, -2.0, 21.0, 21.0]], data_type)) pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2 roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 1) output = roi_align(x, rois) print(output) expect = [[[[4.5, 6.5, 8.5], [16.5, 18.5, 20.5], [28.5, 30.5, 32.5]]]] assert (output.asnumpy() == expect).all() # test case 2 rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], data_type)) pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2 roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0) output = roi_align(x, rois) print(output) expect = [[[[4.5, 6.5, 8.5], [16.5, 18.5, 20.5], [28.5, 30.5, 32.5]]]] assert (output.asnumpy() == expect).all() # test case 3 pooled_height, pooled_width, spatial_scale, sample_num = 2, 2, 1.0, -1 rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], data_type)) roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0) output = roi_align(x, rois) print(output) expect = [[[[6.295, 0.], [0., 0.]]]] np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=2) roi_align_case(np.float32) roi_align_case(np.float16)