# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class SquaredDifference(nn.Cell): def __init__(self): super(SquaredDifference, self).__init__() self.squaredDiff = P.SquaredDifference() def construct(self, x, y): return self.squaredDiff(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nobroadcast_f16(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.uniform(10, 20, (3, 4, 5, 2)).astype(np.float16) input_y = np.random.uniform(40, 50, (3, 4, 5, 2)).astype(np.float16) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff assert np.all(output == expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nobroadcast_f32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(3, 4, 5, 2).astype(np.float32) input_y = np.random.rand(3, 4, 5, 2).astype(np.float32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff assert np.all(output == expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nobroadcast_int32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(3, 4, 5, 2).astype(np.int32) input_y = np.random.rand(3, 4, 5, 2).astype(np.int32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff assert np.all(output == expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_int32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(1, 4, 1, 2).astype(np.int32) input_y = np.random.rand(3, 1, 5, 1).astype(np.int32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff assert np.all(output == expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_f32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(1, 4, 1, 2).astype(np.float32) input_y = np.random.rand(3, 1, 5, 1).astype(np.float32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff assert np.all(output == expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_f16(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(1, 4, 1, 2).astype(np.float16) input_y = np.random.rand(3, 1, 5, 1).astype(np.float16) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff assert np.all(output == expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_bool(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(1, 4, 1, 2).astype(np.bool) input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6 double_check = np.abs(output-expect)/expect assert np.all(double_check < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nobroadcast_bool(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(3, 4, 5, 2).astype(np.bool) input_y = np.random.rand(3, 4, 5, 2).astype(np.float32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6 double_check = np.abs(output-expect)/expect assert np.all(double_check < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_int32_f16(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(1, 4, 1, 2).astype(np.int32) input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float16) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3 double_check = np.abs(output-expect)/expect assert np.all(double_check < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_int32_f32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(1, 4, 1, 2).astype(np.int32) input_y = np.random.uniform(10, 20, (3, 1, 5, 1)).astype(np.float32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6 double_check = np.abs(output-expect)/expect assert np.all(double_check < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nobroadcast_int32_f16(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(2, 4, 3, 2).astype(np.int32) input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float16) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3 double_check = np.abs(output-expect)/expect assert np.all(double_check < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_nobroadcast_int32_f32(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(2, 4, 3, 2).astype(np.int32) input_y = np.random.uniform(10, 20, (2, 4, 3, 2)).astype(np.float32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-6 double_check = np.abs(output-expect)/expect assert np.all(double_check < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_f32_scalar_tensor(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(2).astype(np.float32) input_y = np.random.rand(3, 1, 5, 1).astype(np.float32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff assert np.all(output == expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_f32_tensor_tensor(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(1, 2).astype(np.float32) input_y = np.random.rand(3, 1, 5, 1).astype(np.float32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff assert np.all(output == expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_f32_tensor_tensor_dim_over_7(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(1, 2).astype(np.float32) input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2, 1).astype(np.float32) try: net(Tensor(input_x), Tensor(input_y)) except RuntimeError: assert True @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_f32_tensor_tensor_cannot_brocast(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.rand(5, 3).astype(np.float32) input_y = np.random.rand(3, 1, 5, 1, 3, 4, 2).astype(np.float32) try: net(Tensor(input_x), Tensor(input_y)) except ValueError: assert True @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_int_f32_precision(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.randint(20, 30, (1, 2)).astype(np.int32) input_y = np.random.rand(3, 1, 5, 1).astype(np.float32) output = net(Tensor(input_x), Tensor(input_y)).asnumpy() diff = input_x-input_y expect = diff*diff error = np.ones(shape=np.array(output.shape, dtype=int))*1.0e-3 double_thousand = np.abs(output-expect)/expect assert np.all(double_thousand < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_broadcast_type_error(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") np.random.seed(42) net = SquaredDifference() input_x = np.random.randint(20, 30, (1, 2)).astype(np.bool) input_y = np.random.rand(3, 1, 5, 1).astype(np.bool) try: net(Tensor(input_x), Tensor(input_y)) except TypeError: assert True