# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, multiples): super(Net, self).__init__() self.tile = P.Tile() self.multiples = multiples def construct(self, x): return self.tile(x, self.multiples) def get_output(x, multiples, enable_graph_kernel=False): if enable_graph_kernel: context.set_context(enable_graph_kernel=True) net = Net(multiples) output = net(x) return output def test_tile(shape, dtype, multiples): x = Tensor(np.random.normal(0, 1, shape).astype(dtype)) expect = get_output(x, multiples, False) output = get_output(x, multiples, True) expect_np = expect.asnumpy().copy() output_np = output.asnumpy().copy() assert np.allclose(expect_np, output_np, 0.0001, 0.0001) def test_tile_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") test_tile((24, 1), np.float16, (2, 2, 2)) test_tile((24, 1), np.float32, (1, 2))