# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Resnet50 utils""" import time import numpy as np from mindspore.train.callback import Callback from mindspore import Tensor from mindspore import nn from mindspore.nn.loss.loss import _Loss from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.common import dtype as mstype class Monitor(Callback): """ Monitor loss and time. Args: lr_init (numpy array): train lr Returns: None Examples: >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy()) """ def __init__(self, lr_init=None, step_threshold=10): super(Monitor, self).__init__() self.lr_init = lr_init self.lr_init_len = len(lr_init) self.step_threshold = step_threshold def epoch_begin(self, run_context): self.losses = [] self.epoch_time = time.time() def epoch_end(self, run_context): cb_params = run_context.original_args() epoch_mseconds = (time.time() - self.epoch_time) * 1000 per_step_mseconds = epoch_mseconds / cb_params.batch_num print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:8.6f}".format(epoch_mseconds, per_step_mseconds, np.mean(self.losses))) self.epoch_mseconds = epoch_mseconds def step_begin(self, run_context): self.step_time = time.time() def step_end(self, run_context): cb_params = run_context.original_args() step_mseconds = (time.time() - self.step_time) * 1000 step_loss = cb_params.net_outputs if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor): step_loss = step_loss[0] if isinstance(step_loss, Tensor): step_loss = np.mean(step_loss.asnumpy()) self.losses.append(step_loss) cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:8.6f}/{:8.6f}], time:[{:5.3f}], lr:[{:5.5f}]".format( cb_params.cur_epoch_num, cb_params.epoch_num, cur_step_in_epoch + 1, cb_params.batch_num, step_loss, np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1])) if cb_params.cur_step_num == self.step_threshold: run_context.request_stop() class CrossEntropy(_Loss): """the redefined loss function with SoftmaxCrossEntropyWithLogits""" def __init__(self, smooth_factor=0, num_classes=1001): super(CrossEntropy, self).__init__() self.onehot = P.OneHot() self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) self.ce = nn.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean(False) def construct(self, logit, label): one_hot_label = self.onehot(label, F.shape( logit)[1], self.on_value, self.off_value) loss = self.ce(logit, one_hot_label) loss = self.mean(loss, 0) return loss