# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import random import time from multiprocessing import Process import numpy as np import mindspore.dataset as ds from mindspore import log as logger from mindspore.dataset.engine import SamplingStrategy DATASET_FILE = "../data/mindrecord/testGraphData/testdata" def graphdata_startserver(server_port): """ start graphdata server """ logger.info('test start server.\n') ds.GraphData(DATASET_FILE, 1, 'server', port=server_port) class RandomBatchedSampler(ds.Sampler): # RandomBatchedSampler generate random sequence without replacement in a batched manner def __init__(self, index_range, num_edges_per_sample): super().__init__() self.index_range = index_range self.num_edges_per_sample = num_edges_per_sample def __iter__(self): indices = [i+1 for i in range(self.index_range)] # Reset random seed here if necessary # random.seed(0) random.shuffle(indices) for i in range(0, self.index_range, self.num_edges_per_sample): # Drop reminder if i + self.num_edges_per_sample <= self.index_range: yield indices[i: i + self.num_edges_per_sample] class GNNGraphDataset(): def __init__(self, g, batch_num): self.g = g self.batch_num = batch_num def __len__(self): # Total sample size of GNN dataset # In this case, the size should be total_num_edges/num_edges_per_sample return self.g.graph_info()['edge_num'][0] // self.batch_num def __getitem__(self, index): # index will be a list of indices yielded from RandomBatchedSampler # Fetch edges/nodes/samples/features based on indices nodes = self.g.get_nodes_from_edges(index.astype(np.int32)) nodes = nodes[:, 0] neg_nodes = self.g.get_neg_sampled_neighbors( node_list=nodes, neg_neighbor_num=3, neg_neighbor_type=1) nodes_neighbors = self.g.get_sampled_neighbors(node_list=nodes, neighbor_nums=[ 2, 2], neighbor_types=[2, 1], strategy=SamplingStrategy.RANDOM) neg_nodes_neighbors = self.g.get_sampled_neighbors(node_list=neg_nodes[:, 1:].reshape(-1), neighbor_nums=[2, 2], neighbor_types=[2, 1], strategy=SamplingStrategy.EDGE_WEIGHT) nodes_neighbors_features = self.g.get_node_feature( node_list=nodes_neighbors, feature_types=[2, 3]) neg_neighbors_features = self.g.get_node_feature( node_list=neg_nodes_neighbors, feature_types=[2, 3]) return nodes_neighbors, neg_nodes_neighbors, nodes_neighbors_features[0], neg_neighbors_features[1] def test_graphdata_distributed(): """ Test distributed """ ASAN = os.environ.get('ASAN_OPTIONS') if ASAN: logger.info("skip the graphdata distributed when asan mode") return logger.info('test distributed.\n') server_port = random.randint(10000, 60000) p1 = Process(target=graphdata_startserver, args=(server_port,)) p1.start() time.sleep(5) g = ds.GraphData(DATASET_FILE, 1, 'client', port=server_port) nodes = g.get_all_nodes(1) assert nodes.tolist() == [101, 102, 103, 104, 105, 106, 107, 108, 109, 110] row_tensor = g.get_node_feature(nodes.tolist(), [1, 2, 3]) assert row_tensor[0].tolist() == [[0, 1, 0, 0, 0], [1, 0, 0, 0, 1], [0, 0, 1, 1, 0], [0, 0, 0, 0, 0], [1, 1, 0, 1, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [0, 0, 0, 1, 1], [0, 1, 1, 0, 0], [0, 1, 0, 1, 0]] assert row_tensor[2].tolist() == [1, 2, 3, 1, 4, 3, 5, 3, 5, 4] edges = g.get_all_edges(0) assert edges.tolist() == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] features = g.get_edge_feature(edges, [1, 2]) assert features[0].tolist() == [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0] batch_num = 2 edge_num = g.graph_info()['edge_num'][0] out_column_names = ["neighbors", "neg_neighbors", "neighbors_features", "neg_neighbors_features"] dataset = ds.GeneratorDataset(source=GNNGraphDataset(g, batch_num), column_names=out_column_names, sampler=RandomBatchedSampler(edge_num, batch_num), num_parallel_workers=4, python_multiprocessing=False) dataset = dataset.repeat(2) itr = dataset.create_dict_iterator(num_epochs=1, output_numpy=True) i = 0 for data in itr: assert data['neighbors'].shape == (2, 7) assert data['neg_neighbors'].shape == (6, 7) assert data['neighbors_features'].shape == (2, 7) assert data['neg_neighbors_features'].shape == (6, 7) i += 1 assert i == 40 if __name__ == '__main__': test_graphdata_distributed()