# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_initializer_fuzz """ import pytest import mindspore.nn as nn from mindspore import Model class Net(nn.Cell): """ Net definition """ def __init__(self, in_str): a, b, c, d, e, f, g, h = in_str.strip().split() a = int(a) b = int(b) c = int(b) d = int(b) e = int(b) f = int(b) g = int(b) h = int(b) super(Net, self).__init__() self.conv = nn.Conv2d(a, b, c, pad_mode="valid") self.bn = nn.BatchNorm2d(d) self.relu = nn.ReLU() self.flatten = nn.Flatten() self.fc = nn.Dense(e * f * g, h) def construct(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.flatten(x) out = self.fc(x) return out class LeNet5(nn.Cell): """ LeNet5 definition """ def __init__(self, in_str): super(LeNet5, self).__init__() a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15 = in_str.strip().split() a1 = int(a1) a2 = int(a2) a3 = int(a3) a4 = int(a4) a5 = int(a5) a6 = int(a6) a7 = int(a7) a8 = int(a8) a9 = int(a9) a10 = int(a10) a11 = int(a11) a12 = int(a12) a13 = int(a13) a14 = int(a14) a15 = int(a15) self.conv1 = nn.Conv2d(a1, a2, a3, pad_mode="valid") self.conv2 = nn.Conv2d(a4, a5, a6, pad_mode="valid") self.fc1 = nn.Dense(a7 * a8 * a9, a10) self.fc2 = nn.Dense(a11, a12) self.fc3 = nn.Dense(a13, a14) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=a15) self.flatten = nn.Flatten() def construct(self, x): x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv2(x))) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x def test_shape_error(): """ for fuzz test""" in_str = "3 6 5 6 -6 5 16 5 5 120 120 84 84 3 2" with pytest.raises(ValueError): net = LeNet5(in_str) # neural network Model(net)