# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test image gradients """ import numpy as np import pytest import mindspore.common.dtype as mstype import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import _executor from mindspore.common.api import ms_function context.set_context(device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.image_gradients = nn.ImageGradients() @ms_function def construct(self, x): return self.image_gradients(x) def test_compile(): # input shape 1 x 1 x 2 x 2 image = Tensor(np.array([[[[1, 2], [3, 4]]]]), dtype=mstype.int32) net = Net() _executor.compile(net, image) def test_compile_multi_channel(): # input shape 4 x 2 x 2 x 2 dtype = mstype.int32 image = Tensor(np.array([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]], [[[3, 5], [7, 9]], [[11, 13], [15, 17]]], [[[5, 10], [15, 20]], [[25, 30], [35, 40]]], [[[10, 20], [30, 40]], [[50, 60], [70, 80]]]]), dtype=dtype) net = Net() _executor.compile(net, image) def test_invalid_5d_input(): dtype = mstype.float32 image = Tensor(np.random.random([4, 1, 16, 16, 1]), dtype=dtype) net = Net() with pytest.raises(ValueError): _executor.compile(net, image)