# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation for SSD""" import os import argparse import time import numpy as np from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.ssd import SSD300, SsdInferWithDecoder, ssd_mobilenet_v2, ssd_mobilenet_v1_fpn, ssd_resnet50_fpn, ssd_vgg16 from src.dataset import create_ssd_dataset, create_mindrecord from src.config import config from src.eval_utils import metrics from src.box_utils import default_boxes def ssd_eval(dataset_path, ckpt_path, anno_json): """SSD evaluation.""" batch_size = 1 ds = create_ssd_dataset(dataset_path, batch_size=batch_size, repeat_num=1, is_training=False, use_multiprocessing=False) if config.model == "ssd300": net = SSD300(ssd_mobilenet_v2(), config, is_training=False) elif config.model == "ssd_vgg16": net = ssd_vgg16(config=config) elif config.model == "ssd_mobilenet_v1_fpn": net = ssd_mobilenet_v1_fpn(config=config) elif config.model == "ssd_resnet50_fpn": net = ssd_resnet50_fpn(config=config) else: raise ValueError(f'config.model: {config.model} is not supported') net = SsdInferWithDecoder(net, Tensor(default_boxes), config) print("Load Checkpoint!") param_dict = load_checkpoint(ckpt_path) net.init_parameters_data() load_param_into_net(net, param_dict) net.set_train(False) i = batch_size total = ds.get_dataset_size() * batch_size start = time.time() pred_data = [] print("\n========================================\n") print("total images num: ", total) print("Processing, please wait a moment.") for data in ds.create_dict_iterator(output_numpy=True, num_epochs=1): img_id = data['img_id'] img_np = data['image'] image_shape = data['image_shape'] output = net(Tensor(img_np)) for batch_idx in range(img_np.shape[0]): pred_data.append({"boxes": output[0].asnumpy()[batch_idx], "box_scores": output[1].asnumpy()[batch_idx], "img_id": int(np.squeeze(img_id[batch_idx])), "image_shape": image_shape[batch_idx]}) percent = round(i / total * 100., 2) print(f' {str(percent)} [{i}/{total}]', end='\r') i += batch_size cost_time = int((time.time() - start) * 1000) print(f' 100% [{total}/{total}] cost {cost_time} ms') mAP = metrics(pred_data, anno_json) print("\n========================================\n") print(f"mAP: {mAP}") def get_eval_args(): parser = argparse.ArgumentParser(description='SSD evaluation') parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.") parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"), help="run platform, support Ascend ,GPU and CPU.") return parser.parse_args() if __name__ == '__main__': args_opt = get_eval_args() if args_opt.dataset == "coco": json_path = os.path.join(config.coco_root, config.instances_set.format(config.val_data_type)) elif args_opt.dataset == "voc": json_path = os.path.join(config.voc_root, config.voc_json) else: raise ValueError('SSD eval only support dataset mode is coco and voc!') context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id) mindrecord_file = create_mindrecord(args_opt.dataset, "ssd_eval.mindrecord", False) print("Start Eval!") ssd_eval(mindrecord_file, args_opt.checkpoint_path, json_path)