# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # """test_auc""" import math import numpy as np from mindspore import Tensor from mindspore.nn.metrics import ROC, auc def test_auc(): """test_auc""" x = Tensor(np.array([[3, 0, 1], [1, 3, 0], [1, 0, 2]])) y = Tensor(np.array([[0, 2, 1], [1, 2, 1], [0, 0, 1]])) metric = ROC(pos_label=1) metric.clear() metric.update(x, y) fpr, tpr, thre = metric.eval() output = auc(fpr, tpr) assert math.isclose(output, 0.45, abs_tol=0.001) assert np.equal(thre, np.array([4, 3, 2, 1, 0])).all()