# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import mindspore.common.dtype as mstype import mindspore.dataset as ds from mindspore import log as logger # just a basic test with parallel random data op def test_randomdataset_basic1(): logger.info("Test randomdataset basic 1") schema = ds.Schema() schema.add_column('image', de_type=mstype.uint8, shape=[2]) schema.add_column('label', de_type=mstype.uint8, shape=[1]) # apply dataset operations ds1 = ds.RandomDataset(schema=schema, total_rows=50, num_parallel_workers=4) ds1 = ds1.repeat(4) num_iter = 0 for data in ds1.create_dict_iterator(num_epochs=1): # each data is a dictionary # in this example, each dictionary has keys "image" and "label" logger.info("{} image: {}".format(num_iter, data["image"])) logger.info("{} label: {}".format(num_iter, data["label"])) num_iter += 1 logger.info("Number of data in ds1: {}".format(num_iter)) assert num_iter == 200 logger.info("Test randomdataset basic 1 complete") # Another simple test def test_randomdataset_basic2(): logger.info("Test randomdataset basic 2") schema = ds.Schema() schema.add_column('image', de_type=mstype.uint8, shape=[640, 480, 3]) # 921600 bytes (a bit less than 1 MB per image) schema.add_column('label', de_type=mstype.uint8, shape=[1]) # Make up 10 rows ds1 = ds.RandomDataset(schema=schema, total_rows=10, num_parallel_workers=1) ds1 = ds1.repeat(4) num_iter = 0 for data in ds1.create_dict_iterator(num_epochs=1): # each data is a dictionary # in this example, each dictionary has keys "image" and "label" # logger.info(data["image"]) logger.info("printing the label: {}".format(data["label"])) num_iter += 1 logger.info("Number of data in ds1: {}".format(num_iter)) assert num_iter == 40 logger.info("Test randomdataset basic 2 complete") # Another simple test def test_randomdataset_basic3(): logger.info("Test randomdataset basic 3") # Make up 10 samples, but here even the schema is randomly created # The columns are named like this "c0", "c1", "c2" etc # But, we will use a tuple iterator instead of dict iterator so the column names # are not needed to iterate ds1 = ds.RandomDataset(total_rows=10, num_parallel_workers=1) ds1 = ds1.repeat(2) num_iter = 0 for _ in ds1.create_tuple_iterator(num_epochs=1): num_iter += 1 logger.info("Number of data in ds1: {}".format(num_iter)) assert num_iter == 20 logger.info("Test randomdataset basic 3 Complete") if __name__ == '__main__': test_randomdataset_basic1() test_randomdataset_basic2() test_randomdataset_basic3()