/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "common/common_test.h" #include "backend/kernel_compiler/common_utils.h" namespace mindspore { namespace kernel { class CommonUtilTest : public UT::Common { public: CommonUtilTest() = default; }; TEST_F(CommonUtilTest, DeduplicateIndexedSlicesTest1) { // The indices is a vector and the grad is a tensor with shape (6, 2) /* 0 * 0 * 1 * 1 * 0 * 3 */ std::vector indices{0, 0, 1, 1, 0, 3}; /* 0 1 * 2 3 * 4 5 * 6 7 * 8 9 * 10 11 */ std::vector grad; for (int i = 0; i < 6 * 2; i++) { grad.push_back(i); } std::vector unique_indices(3); std::vector summed_grad(6); SparseGradient unique_grad({summed_grad.data(), unique_indices.data(), 0}); ReduceSparseGradient(SparseGradient({grad.data(), indices.data(), 6}), &unique_grad, 6, 2); EXPECT_EQ(unique_grad.indices_size_, 3); EXPECT_EQ(unique_indices, std::vector({0, 1, 3})); /* 10 13 * 10 12 * 10 11 */ EXPECT_EQ(summed_grad, std::vector({10, 13, 10, 12, 10, 11})); } TEST_F(CommonUtilTest, DeduplicateIndexedSlicesTest2) { // The indices is a vector and the grad is a tensor with shape (6, 2) /* 0 * 0 * 1 * 1 * 0 * 6 */ std::vector indices{0, 0, 1, 1, 0, 6}; /* 0 1 * 2 3 * 4 5 * 6 7 * 8 9 * 10 11 */ std::vector grad; for (int i = 0; i < 6 * 2; i++) { grad.push_back(i); } std::vector unique_indices(2); std::vector summed_grad(4); SparseGradient unique_grad({summed_grad.data(), unique_indices.data(), 0}); ReduceSparseGradient(SparseGradient({grad.data(), indices.data(), 6}), &unique_grad, 6, 2); EXPECT_EQ(unique_grad.indices_size_, 2); EXPECT_EQ(unique_indices, std::vector({0, 1})); /* 10 13 * 10 12 */ EXPECT_EQ(summed_grad, std::vector({10, 13, 10, 12})); } } // namespace kernel } // namespace mindspore