# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops.operations import _grad_ops as G context.set_context(device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.bias_add_grad = G.BiasAddGrad() # self.dout = Parameter(initializer( # 'normal', [2, 3, 3, 4]), name='dout') @ms_function def construct(self, dout_): return self.bias_add_grad(dout_) dout = np.ones([2, 3, 4, 4]).astype(np.float32) bias_add_grad = Net() output = bias_add_grad(Tensor(dout)) expect_output = np.array([32., 32., 32.]).astype(np.float32) assert np.all(output.asnumpy() == expect_output), "bias_add_grad execute failed, please check current code commit" print(output.asnumpy())