# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return C.grad_all(self.network)(x, y, b) # model_parallel test def test_l2normalize_matmul(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.norm1 = P.L2Normalize(axis=0).set_strategy(strategy1) self.norm2 = P.L2Normalize(axis=0).set_strategy(strategy1) self.mul1 = P.Mul().set_strategy(strategy2) self.mul2 = P.Mul().set_strategy(strategy3) def construct(self, x, y, b): y = self.norm1(y) x = self.norm2(x) out = self.mul1(x, y) out = self.mul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((1, 1, 4),) strategy2 = ((1, 1, 4), (1, 1, 4)) strategy3 = ((1, 1, 8), (1, 1, 8)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32) y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32) b = Tensor(np.ones([128, 32, 64]), dtype=ms.float32) _executor.compile(net, x, y, b)