# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore.common.api import _executor from mindspore.communication.management import init from mindspore.nn import Dense from mindspore.nn import Momentum from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.ops import operations as P from mindspore.train.parallel_utils import ParallelMode class Net(nn.Cell): def __init__(self, input_channel, out_channel): super(Net, self).__init__() weight_init1 = np.ones([64, 128]).astype(np.float32) weight_init2 = np.ones([32, 64]).astype(np.float32) self.weight1 = Parameter(Tensor(weight_init1), "loss_weight1", layerwise_parallel=True) self.weight2 = Parameter(Tensor(weight_init2), "loss_weight2", layerwise_parallel=True) self.fc = P.MatMul(transpose_b=True) self.dense = Dense(input_channel, out_channel) def construct(self, x): x = self.dense(x) x = self.fc(x, self.weight1) x = self.fc(x, self.weight2) return x def test_dense_gen_graph(): context.set_context(mode=context.GRAPH_MODE) init() network = Net(512, 128) loss_fn = nn.SoftmaxCrossEntropyWithLogits() optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), learning_rate=0.1, momentum=0.9) network = WithLossCell(network, loss_fn) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.HYBRID_PARALLEL, mirror_mean=True, device_num=8) network = TrainOneStepCell(network, optimizer) predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01) label = Tensor(np.zeros([64, 32]).astype(np.float32)) network.set_auto_parallel() _executor.compile(network, predict, label)