# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common import dtype as mstype from mindspore.common.api import _executor from mindspore.common.parameter import Parameter from mindspore.common.parameter import ParameterTuple from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.optim.momentum import Momentum from mindspore.ops import composite as C from mindspore.ops import functional as F from mindspore.ops import operations as P from mindspore.ops.operations.comm_ops import _VirtualDataset from mindspore.parallel import set_algo_parameters from mindspore.train import Model, ParallelMode from tests.dataset_mock import MindData from tests.ut.python.ops.test_math_ops import VirtualLoss context.set_context(mode=context.GRAPH_MODE) context.reset_auto_parallel_context() class Dataset(MindData): def __init__(self, predict, label, length=3, input_num=2): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length self.input_num = input_num def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 if self.input_num == 2: return self.predict, self.label else: return self.predict, def reset(self): self.index = 0 class ReshapeNet(nn.Cell): def __init__(self, strategy0, strategy1, strategy2): super(ReshapeNet, self).__init__() self.relu = P.ReLU().set_strategy(strategy0) self.reshape = P.Reshape().set_strategy(strategy1) self.matmul = P.MatMul().set_strategy(strategy2) self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight") def construct(self, x): x = self.relu(x) x = self.reshape(x, (256, 25088)) x = self.matmul(x, self.matmul_weight) return x def reshape_net(strategy0, strategy1, strategy2): return ReshapeNet(strategy0=strategy0, strategy1=strategy1, strategy2=strategy2) def reshape_common(parallel_mode, strategy0, strategy1, strategy2, strategy_loss): batch_size = 32 learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8) predict = Tensor(np.ones([32, 512, 7, 7]), dtype=ms.float32) label = Tensor(np.ones([32]), dtype=ms.int32) dataset = Dataset(predict, label, 2) net = reshape_net(strategy0, strategy1, strategy2) loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) loss.softmax_cross_entropy.set_strategy(strategy_loss) loss.one_hot.set_strategy(((8, 1), (), ())) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss, opt) model.train(epoch_size, dataset, dataset_sink_mode=False) def test_reshape1(): strategy0 = ((8, 1, 1, 1),) strategy1 = None strategy2 = ((8, 1), (1, 1)) strategy_loss = ((8, 1), (8, 1)) reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) def test_reshape1_strategy_1(): strategy0 = ((8, 1, 1, 1),) strategy1 = ((8, 1, 1, 1),) strategy2 = ((8, 1), (1, 1)) strategy_loss = ((8, 1), (8, 1)) try: reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) except: pass def test_reshape1_strategy_2(): strategy0 = ((8, 1, 1, 1),) strategy1 = ((8, 1, 1, 1),) strategy2 = ((8, 1), (1, 1)) strategy_loss = ((8, 1), (8, 1)) try: reshape_common(ParallelMode.AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) except: pass def test_reshape2(): strategy0 = ((8, 1, 1, 1),) strategy1 = None strategy2 = ((8, 1), (1, 1)) strategy_loss = ((8, 1), (8, 1)) reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) def test_reshape3(): strategy0 = ((2, 1, 1, 1),) strategy1 = None strategy2 = ((8, 1), (1, 1)) strategy_loss = ((8, 1), (8, 1)) reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) def test_reshape4(): strategy0 = ((1, 1, 1, 1),) strategy1 = None strategy2 = ((8, 1), (1, 1)) strategy_loss = ((8, 1), (8, 1)) reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) def test_reshape5(): strategy0 = ((2, 1, 1, 1),) strategy1 = None strategy2 = ((1, 8), (8, 1)) strategy_loss = ((8, 1), (8, 1)) reshape_common(ParallelMode.SEMI_AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) def test_reshape_auto(): strategy0 = None strategy1 = None strategy2 = None strategy_loss = None reshape_common(ParallelMode.AUTO_PARALLEL, strategy0, strategy1, strategy2, strategy_loss) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x): predict = self.network(x) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x): return C.grad_all(self.network)(x) class ReshapeNet1(nn.Cell): def __init__(self, strategy0): super(ReshapeNet1, self).__init__() self.virtual_dataset = _VirtualDataset() self.reshape = P.Reshape() self.matmul = P.MatMul().set_strategy(strategy0) self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight") self.reshape2 = P.Reshape() def construct(self, x): x = self.virtual_dataset(x) x = self.reshape(x, (256, 25088)) x = self.matmul(x, self.matmul_weight) x = self.reshape2(x, (256 * 256,)) return x class ReshapeNet2(nn.Cell): def __init__(self, strategy0): super(ReshapeNet2, self).__init__() self.virtual_dataset = _VirtualDataset() self.reshape = P.Reshape() self.matmul = P.MatMul().set_strategy(strategy0) self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight") self.reshape2 = P.Reshape() self.reduce_sum = P.ReduceSum(keep_dims=True) self.reshape3 = P.Reshape() def construct(self, x): x = self.virtual_dataset(x) x = self.reshape(x, (256, 25088)) x = self.matmul(x, self.matmul_weight) x = self.reshape2(x, (256 * 256,)) x = self.reduce_sum(x, -1) x = self.reshape3(x, ()) return x class ReshapeNet3(nn.Cell): def __init__(self, strategy0): super(ReshapeNet3, self).__init__() self.virtual_dataset = _VirtualDataset() self.reshape = P.Reshape() self.matmul = P.MatMul().set_strategy(strategy0) self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight") self.reshape2 = P.Reshape() self.reduce_sum = P.ReduceSum(keep_dims=False) self.reshape3 = P.Reshape() def construct(self, x): x = self.virtual_dataset(x) x = self.reshape(x, (256, 25088)) x = self.matmul(x, self.matmul_weight) x = self.reshape2(x, (256 * 256,)) x = self.reduce_sum(x, -1) x = self.reshape3(x, (1, 1)) return x class ReshapeNet4(nn.Cell): def __init__(self, strategy0): super(ReshapeNet4, self).__init__() self.virtual_dataset = _VirtualDataset() self.reshape = P.Reshape() self.reshape2 = P.Reshape() self.matmul = P.MatMul().set_strategy(strategy0) self.matmul_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight") def construct(self, x): x = self.virtual_dataset(x) x = self.reshape(x, (256, 25088)) w = self.reshape2(self.matmul_weight, (25088, 256)) x = self.matmul(x, w) return x class ReshapeNet5(nn.Cell): def __init__(self, strategy0): super(ReshapeNet5, self).__init__() self.virtual_dataset = _VirtualDataset() self.reshape = P.Reshape() self.matmul1 = P.MatMul().set_strategy(strategy0) self.matmul1_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight") self.matmul2 = P.MatMul().set_strategy(strategy0) def construct(self, x): x = self.virtual_dataset(x) x = self.reshape(x, (256, 25088)) matmul1_o = self.matmul1(x, self.matmul1_weight) matmul2_o = self.matmul2(matmul1_o, x) return matmul2_o class ReshapeNet6(nn.Cell): def __init__(self, strategy0): super(ReshapeNet6, self).__init__() self.virtual_dataset = _VirtualDataset() self.reshape = P.Reshape() self.matmul1_1 = P.MatMul().set_strategy(strategy0) self.matmul1_2 = P.MatMul().set_strategy(strategy0) self.matmul1_weight = Parameter(Tensor(np.ones([25088, 256]), dtype=ms.float32), name="weight") self.matmul2 = P.MatMul().set_strategy(strategy0) self.add = P.TensorAdd() def construct(self, x): x = self.virtual_dataset(x) x = self.reshape(x, (256, 25088)) matmul1_1_o = self.matmul1_1(x, self.matmul1_weight) matmul1_2_o = self.matmul1_2(x, self.matmul1_weight) matmul1_o = self.add(matmul1_1_o, matmul1_2_o) matmul2_o = self.matmul2(matmul1_o, x) return matmul2_o def compile(net, input): net.set_auto_parallel() _executor.compile(net, input) def reshape_net2(backbone): batch_size = 16 device_num = 16 context.set_auto_parallel_context(device_num=device_num, global_rank=0) input = Tensor(np.ones([batch_size * device_num, 512, 7, 7]).astype(np.float32) * 0.01) net = GradWrap(NetWithLoss(backbone)) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") compile(net, input) def test_reshape_net1_1(): reshape_net2(ReshapeNet1(((1, 8), (8, 1)))) def test_reshape_net1_2(): reshape_net2(ReshapeNet1(((1, 8), (8, 2)))) def test_reshape_net2_1(): reshape_net2(ReshapeNet2(((1, 8), (8, 1)))) def test_reshape_net2_2(): reshape_net2(ReshapeNet2(((1, 8), (8, 2)))) def test_reshape_net3_1(): reshape_net2(ReshapeNet3(((1, 8), (8, 1)))) def test_reshape_net3_2(): reshape_net2(ReshapeNet3(((1, 8), (8, 2)))) def test_reshape_net4_1(): try: reshape_net2(ReshapeNet4(((1, 8), (8, 1)))) except: pass def test_reshape_net4_2(): try: reshape_net2(ReshapeNet4(((1, 8), (8, 2)))) except: pass def test_reshape_net5_1(): reshape_net2(ReshapeNet5(((1, 8), (8, 1)))) def test_reshape_net5_2(): reshape_net2(ReshapeNet5(((1, 8), (8, 2)))) def test_reshape_net6_1(): reshape_net2(ReshapeNet6(((1, 8), (8, 1)))) def test_reshape_net6_2(): reshape_net2(ReshapeNet6(((1, 8), (8, 2)))) class TrainOneStepCell(nn.Cell): """ Network training package class. Append an optimizer to the training network after that the construct function can be called to create the backward graph. Args: network (Cell): The training network. optimizer (Cell): Optimizer for updating the weights. sens (Number): The adjust parameter. Default: 1.0. Examples: >>> net = Net() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits() >>> optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> loss_net = WithLossCell(net, loss_fn) >>> train_net = TrainOneStepCell(loss_net, optim) """ def __init__(self, network, optimizer, sens=1.0): super(TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.sens = sens def construct(self, data): weights = self.weights loss = self.network(data) sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) grads = self.grad(self.network, weights)(data, sens) return F.depend(loss, self.optimizer(grads)) def reshape_common2(parallel_mode, net): batch_size = 16 learning_rate = 0.1 momentum = 0.9 epoch_size = 2 predict = Tensor(np.ones([batch_size, 512, 7, 7]), dtype=ms.float32) label = Tensor(np.ones([batch_size]), dtype=ms.int32) dataset = Dataset(predict, label, 2, input_num=1) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=16) opt = Momentum(net.trainable_params(), learning_rate, momentum) train_net = TrainOneStepCell(net, opt).set_train() model = Model(train_net) model.train(epoch_size, dataset, dataset_sink_mode=False) def test_reshape_common2_0(): reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet1(((1, 8), (8, 1)))) def test_reshape_common2_1(): reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet1(((1, 8), (8, 2)))) def test_reshape_common2_2(): reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet2(((1, 8), (8, 1)))) def test_reshape_common2_3(): reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet2(((1, 8), (8, 2)))) def test_reshape_common2_4(): reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet3(((1, 8), (8, 1)))) def test_reshape_common2_5(): reshape_common2(ParallelMode.SEMI_AUTO_PARALLEL, ReshapeNet3(((1, 8), (8, 2)))) class BatchNormReshapeNet(nn.Cell): def __init__(self): super(BatchNormReshapeNet, self).__init__() self.vd = P._VirtualDataset() self.batch_norm = nn.BatchNorm1d(512, affine=False) self.reshape = P.Reshape() self.prelu = nn.PReLU(channel=256) def construct(self, x): x = self.vd(x) x = self.batch_norm(x) x = self.reshape(x, (512, 256)) x = self.prelu(x) return x def test_batchnorm_reshape_train(): batch_size = 16 device_num = 16 context.set_auto_parallel_context(device_num=device_num, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") input = Tensor(np.ones([batch_size * device_num, 512]).astype(np.float32) * 0.01) net = GradWrap(NetWithLoss(BatchNormReshapeNet())) compile(net, input) def bn_with_initialize(out_channels): bn = nn.BatchNorm2d(out_channels, momentum=0.3, eps=1e-5).add_flags_recursive(fp32=True) return bn def fc_with_initialize(input_channels, out_channels): return nn.Dense(input_channels, out_channels).add_flags_recursive(fp16=True) class BNReshapeDenseBNNet(nn.Cell): def __init__(self): super(BNReshapeDenseBNNet, self).__init__() self.batch_norm = bn_with_initialize(2) self.reshape = P.Reshape() self.cast = P.Cast() self.batch_norm2 = nn.BatchNorm1d(512, affine=False) self.fc = fc_with_initialize(2 * 32 * 32, 512) def construct(self, x): x = self.batch_norm(x) x = self.reshape(x, (16, 2 * 32 * 32)) x = self.fc(x) x = self.batch_norm2(x) return x def test_bn_reshape_dense_bn_train(): batch_size = 16 device_num = 16 context.set_auto_parallel_context(device_num=device_num, global_rank=0) input = Tensor(np.ones([batch_size, 2, 32, 32]).astype(np.float32) * 0.01) net = GradWrap(NetWithLoss(BNReshapeDenseBNNet())) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") compile(net, input) class ParallelReduceMeanNet(nn.Cell): def __init__(self, conv_in_channel, conv_out_channel, reducemean_keep_dims=False, reducemean_axis=-1, strategy=None): super().__init__() self.conv = nn.Conv2d(in_channels=conv_in_channel, out_channels=conv_out_channel, kernel_size=1, stride=1, pad_mode='valid', has_bias=True, weight_init='ones', bias_init='ones') self.reduce_mean = P.ReduceMean(keep_dims=reducemean_keep_dims) self.flat = nn.Flatten() self.reducemean_axis = reducemean_axis if strategy is not None: self.reduce_mean.set_strategy(strategy) def construct(self, inputs): x = self.conv(inputs) x = self.reduce_mean(x, self.reducemean_axis) x = self.flat(x) return x class CrossEntropyLoss(nn.Cell): def __init__(self, reduction='mean'): super(CrossEntropyLoss, self).__init__() self.reduce_mean = P.ReduceMean() self.cross_entropy = SoftmaxCrossEntropyWithLogits() self.reduction = reduction def construct(self, logits, label): loss = self.cross_entropy(logits, label) if self.reduction == 'mean': loss = self.reduce_mean(loss, (-1,)) return loss def test_flatten_reshape(parallel_mode="auto_parallel"): batch_size = 16 learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8) net = ParallelReduceMeanNet(conv_in_channel=3, conv_out_channel=64, reducemean_axis=(2, 3), strategy=((4, 2, 1, 1),)) loss = CrossEntropyLoss() predict = Tensor(np.ones([batch_size, 3, 32, 32]), dtype=ms.float32) label = Tensor(np.ones([batch_size, 64]), dtype=ms.float32) dataset = Dataset(predict, label, 2, input_num=2) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss_fn=loss, optimizer=opt) model.train(epoch_size, dataset, dataset_sink_mode=False) def test_flatten_reshape2(parallel_mode="auto_parallel"): batch_size = 16 learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8) set_algo_parameters(fully_use_devices=False) net = ParallelReduceMeanNet(conv_in_channel=3, conv_out_channel=64, reducemean_axis=(2, 3), strategy=((4, 1, 1, 1),)) loss = CrossEntropyLoss() predict = Tensor(np.ones([batch_size, 3, 32, 32]), dtype=ms.float32) label = Tensor(np.ones([batch_size, 64]), dtype=ms.float32) dataset = Dataset(predict, label, 2, input_num=2) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss_fn=loss, optimizer=opt) model.train(epoch_size, dataset, dataset_sink_mode=False) class ParallelReshapeNet(nn.Cell): def __init__(self, dense_in_channel, dense_out_channel, shape, strategy=None): super().__init__() self.flat = nn.Flatten() self.dense = nn.Dense(in_channels=dense_in_channel, out_channels=dense_out_channel, weight_init='ones', bias_init='ones', has_bias=True) self.reshape = P.Reshape() self.shape = shape self.reshape.set_strategy(strategy) def construct(self, inputs): x = self.flat(inputs) x = self.dense(x) x = self.reshape(x, self.shape) return x # the shape of input and output of reshape is the same # reshape is optimized before step_parallel def test_flatten_reshape3(parallel_mode="auto_parallel"): batch_size = 16 learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8) set_algo_parameters(fully_use_devices=False) net = ParallelReshapeNet(dense_in_channel=2048, dense_out_channel=1000, shape=(128, 1000), strategy=((16, 1),)) loss = CrossEntropyLoss() predict = Tensor(np.ones([batch_size, 1, 2, 1024]), dtype=ms.float32) label = Tensor(np.ones([batch_size, 1000]), dtype=ms.float32) dataset = Dataset(predict, label, 2, input_num=2) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss_fn=loss, optimizer=opt) model.train(epoch_size, dataset, dataset_sink_mode=False) class CrossEntropyLoss2(nn.Cell): def __init__(self, reduction='mean'): super(CrossEntropyLoss2, self).__init__() self.cross_entropy = SoftmaxCrossEntropyWithLogits(reduction=reduction) def construct(self, logits, label): loss = self.cross_entropy(logits, label) return loss def test_flatten_reshape4(parallel_mode="semi_auto_parallel"): batch_size = 16 learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8) set_algo_parameters(fully_use_devices=False) net = ParallelReduceMeanNet(conv_in_channel=3, conv_out_channel=64, reducemean_keep_dims=True, strategy=((4, 1, 1, 1),)) loss = CrossEntropyLoss2() predict = Tensor(np.ones([batch_size, 3, 32, 32]), dtype=ms.float32) label = Tensor(np.ones([batch_size, 2048]), dtype=ms.float32) dataset = Dataset(predict, label, 2, input_num=2) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss_fn=loss, optimizer=opt) model.train(epoch_size, dataset, dataset_sink_mode=False)