# Copyright 2020 Huawei Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing FiveCrop in DE """ import pytest import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms import mindspore.dataset.vision.py_transforms as vision from mindspore import log as logger from util import visualize_list, save_and_check_md5 DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" GENERATE_GOLDEN = False def test_five_crop_op(plot=False): """ Test FiveCrop """ logger.info("test_five_crop") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms_1 = [ vision.Decode(), vision.ToTensor(), ] transform_1 = mindspore.dataset.transforms.py_transforms.Compose(transforms_1) data1 = data1.map(operations=transform_1, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms_2 = [ vision.Decode(), vision.FiveCrop(200), lambda *images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 5 images ] transform_2 = mindspore.dataset.transforms.py_transforms.Compose(transforms_2) data2 = data2.map(operations=transform_2, input_columns=["image"]) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): num_iter += 1 image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image_2 = item2["image"] logger.info("shape of image_1: {}".format(image_1.shape)) logger.info("shape of image_2: {}".format(image_2.shape)) logger.info("dtype of image_1: {}".format(image_1.dtype)) logger.info("dtype of image_2: {}".format(image_2.dtype)) if plot: visualize_list(np.array([image_1]*5), (image_2 * 255).astype(np.uint8).transpose(0, 2, 3, 1)) # The output data should be of a 4D tensor shape, a stack of 5 images. assert len(image_2.shape) == 4 assert image_2.shape[0] == 5 def test_five_crop_error_msg(): """ Test FiveCrop error message. """ logger.info("test_five_crop_error_msg") data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms = [ vision.Decode(), vision.FiveCrop(200), vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) with pytest.raises(RuntimeError) as info: for _ in data: pass error_msg = "TypeError: __call__() takes 2 positional arguments but 6 were given" # error msg comes from ToTensor() assert error_msg in str(info.value) def test_five_crop_md5(): """ Test FiveCrop with md5 check """ logger.info("test_five_crop_md5") # First dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms = [ vision.Decode(), vision.FiveCrop(100), lambda *images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 5 images ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) # Compare with expected md5 from images filename = "five_crop_01_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) if __name__ == "__main__": test_five_crop_op(plot=True) test_five_crop_error_msg() test_five_crop_md5()