# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.common import dtype as mstype context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class Net(nn.Cell): def __init__(self, fill_mode=0): super(Net, self).__init__() self.det_triangle = P.DetTriangle(fill_mode=fill_mode) def construct(self, x): return self.det_triangle(x) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_1D(): fill_mode = 0 input_x = np.array([[1, 0, 0], [2, 3, 0], [4, 5, 6]]).astype(np.float32) net = Net(fill_mode=fill_mode) tx = Tensor(input_x, mstype.float32) output = net(tx) assert output == 18