# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test TensorAdd """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.add = P.TensorAdd() def construct(self, input1, input2): return self.add(input1, input2) def test_tensor_add(): """test_tensor_add""" add = P.TensorAdd() input1 = Tensor(np.random.rand(1, 3, 4, 4).astype(np.float32)) input2 = Tensor(np.random.rand(1, 3, 4, 4).astype(np.float32)) output = add(input1, input2) output_np = output.asnumpy() input1_np = input1.asnumpy() input2_np = input2.asnumpy() print(input1_np[0][0][0][0]) print(input2_np[0][0][0][0]) print(output_np[0][0][0][0]) assert isinstance(output_np[0][0][0][0], np.float32)