# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore import context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return grad_all(self.network)(x, y, b) def compile_net(net, x, y, b): net.set_auto_parallel() net.set_train() _executor.compile(net, x, y, b) def test_rhombus1(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul = P.MatMul() self.tadd1 = P.TensorAdd() self.tadd2 = P.TensorAdd() self.weight = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad=True) def construct(self, x, y, z): mm_out = self.matmul(x, self.weight) ta1_out = self.tadd1(y, z) out = self.tadd2(ta1_out, mm_out) return out size = 16 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([128, 128]), dtype=ms.float32) y = Tensor(np.ones([128, 128]), dtype=ms.float32) b = Tensor(np.ones([128, 128]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="auto_parallel") compile_net(net, x, y, b) def test_rhombus2(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() self.tadd1 = P.TensorAdd() self.tadd2 = P.TensorAdd() self.tadd3 = P.TensorAdd() self.weight1 = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad=True) self.weight2 = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad=True) def construct(self, x, y, z): mm1_out = self.matmul1(x, self.weight1) ta1_out = self.tadd1(y, z) ta2_out = self.tadd2(mm1_out, ta1_out) mm2_out = self.matmul2(ta1_out, self.weight2) ta3_out = self.tadd3(ta2_out, mm2_out) return ta3_out size = 16 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([128, 128]), dtype=ms.float32) y = Tensor(np.ones([128, 128]), dtype=ms.float32) b = Tensor(np.ones([128, 128]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="auto_parallel") compile_net(net, x, y, b) def test_rhombus3(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul1 = P.MatMul() self.tadd1 = P.TensorAdd() self.tadd2 = P.TensorAdd() self.tadd3 = P.TensorAdd() self.tadd4 = P.TensorAdd() self.weight1 = Parameter(Tensor(np.ones([128, 128]).astype(np.float32) * 0.01), "w", requires_grad=True) self.t = Tensor(np.ones([128, 128]).astype(np.float32) * 0.01) def construct(self, x, y, z): mm1_out = self.matmul1(x, self.weight1) ta1_out = self.tadd1(y, z) ta2_out = self.tadd2(mm1_out, ta1_out) ta3_out = self.tadd3(ta1_out, self.t) ta4_out = self.tadd4(ta2_out, ta3_out) return ta4_out size = 16 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([128, 128]), dtype=ms.float32) y = Tensor(np.ones([128, 128]), dtype=ms.float32) z = Tensor(np.ones([128, 128]), dtype=ms.float32) net = GradWrap(NetWithLoss(Net())) context.set_auto_parallel_context(parallel_mode="auto_parallel") compile_net(net, x, y, z)