# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, w1, w2): predict = self.network(x, w1, w2) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, w1, w2): return grad_all(self.network)(x, w1, w2) class NetConv(nn.Cell): def __init__(self, cin, cout, kernel_size, stride=1, pad_mode='pad', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros', strategy=None): super(NetConv, self).__init__() self.conv = nn.Conv2d(cin, cout, kernel_size, stride, pad_mode, padding, dilation, group, has_bias, weight_init, bias_init) self.conv.conv2d.shard(strategy) def construct(self, input_x): return self.conv(input_x) def test_batch(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.conv1 = NetConv(16, 8, (3, 3), bias_init='zeros', strategy=strategy1) self.mul1 = P.Mul().shard(strategy2) self.conv2 = NetConv(8, 64, (9, 9), bias_init='zeros', strategy=strategy1) self.mul2 = P.Mul().shard(strategy3) def construct(self, x, w1, w2): out1 = self.conv1(x) out2 = self.mul1(out1, w1) out3 = self.conv2(out2) out4 = self.mul2(out3, w2) return out4 context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8), (1, 1, 1, 8)) strategy3 = ((4, 1, 1, 2), (4, 1, 1, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) net.set_auto_parallel() x = Tensor(np.ones([128, 16, 34, 34]), dtype=ms.float32) w1 = Tensor(np.ones([128, 8, 32, 32]), dtype=ms.float32) w2 = Tensor(np.ones([128, 64, 24, 24]), dtype=ms.float32) net.set_train() _executor.compile(net, x, w1, w2) if __name__ == '__main__': test_batch()