# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context import mindspore.common.dtype as mstype from mindspore.common.seed import _get_graph_seed from mindspore.common.api import _executor from mindspore._checkparam import Validator from mindspore.ops.primitive import constexpr from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return grad_all(self.network)(x, y, b) @constexpr def _is_float_dtype(dtype): if dtype in [mstype.float32, mstype.float16]: return True return False class Dropout(nn.Cell): def __init__(self, keep_prob=0.5, dtype=mstype.float32): super(Dropout, self).__init__() if keep_prob <= 0 or keep_prob > 1: raise ValueError("dropout probability should be a number in range (0, 1], but got {}".format(keep_prob)) Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name) Validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name) self.keep_prob = keep_prob seed0, seed1 = _get_graph_seed(0, "dropout") self.seed0 = seed0 self.seed1 = seed1 self.dtype = dtype self.get_shape = P.Shape() self.dropout_gen_mask = P.DropoutGenMask(Seed0=self.seed0, Seed1=self.seed1) self.dropout_do_mask = P.DropoutDoMask() self.cast = P.Cast() self.is_gpu = context.get_context('device_target') in ["GPU"] self.dropout = P.Dropout(keep_prob) def construct(self, x): if not self.training: return x if self.is_gpu: out, _ = self.dropout(x) return out if self.keep_prob == 1: return x shape = self.get_shape(x) dtype = P.DType()(x) if _is_float_dtype(dtype): keep_prob = self.cast(self.keep_prob, dtype) else: keep_prob = self.cast(self.keep_prob, mstype.float16) output = self.dropout_gen_mask(shape, keep_prob) return self.dropout_do_mask(x, output, keep_prob) def extend_repr(self): return 'keep_prob={}, dtype={}'.format(self.keep_prob, self.dtype) # model_parallel test def test_two_matmul_dropout(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.dropout = Dropout() self.dropout.dropout_do_mask.shard(strategy2) self.dropout.dropout_gen_mask.shard(strategy2) self.matmul2 = P.MatMul().shard(strategy3) def construct(self, x, y, b): out = self.matmul1(x, y) out = self.dropout(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((4, 2), (2, 1)) strategy2 = ((8, 1),) strategy3 = ((1, 8), (8, 1)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) net.set_train() _executor.compile(net, x, y, b)