# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Eval""" import os import time import argparse import datetime import glob import numpy as np import mindspore.nn as nn from mindspore import Tensor, context from mindspore.communication.management import init, get_rank, get_group_size, release from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.common import dtype as mstype from src.utils.logging import get_logger from src.utils.auto_mixed_precision import auto_mixed_precision from src.image_classification import get_network from src.dataset import classification_dataset from src.config import config class ParameterReduce(nn.Cell): """ParameterReduce""" def __init__(self): super(ParameterReduce, self).__init__() self.cast = P.Cast() self.reduce = P.AllReduce() def construct(self, x): one = self.cast(F.scalar_to_array(1.0), mstype.float32) out = x * one ret = self.reduce(out) return ret def parse_args(cloud_args=None): """parse_args""" parser = argparse.ArgumentParser('mindspore classification test') parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform') # dataset related parser.add_argument('--data_dir', type=str, default='/opt/npu/datasets/classification/val', help='eval data dir') parser.add_argument('--per_batch_size', default=32, type=int, help='batch size for per npu') # network related parser.add_argument('--graph_ckpt', type=int, default=1, help='graph ckpt or feed ckpt') parser.add_argument('--pretrained', default='', type=str, help='fully path of pretrained model to load. ' 'If it is a direction, it will test all ckpt') # logging related parser.add_argument('--log_path', type=str, default='outputs/', help='path to save log') parser.add_argument('--is_distributed', type=int, default=0, help='if multi device') # roma obs parser.add_argument('--train_url', type=str, default="", help='train url') args, _ = parser.parse_known_args() args = merge_args(args, cloud_args) args.image_size = config.image_size args.num_classes = config.num_classes args.backbone = config.backbone args.rank = config.rank args.group_size = config.group_size args.image_size = list(map(int, args.image_size.split(','))) return args def get_top5_acc(top5_arg, gt_class): sub_count = 0 for top5, gt in zip(top5_arg, gt_class): if gt in top5: sub_count += 1 return sub_count def merge_args(args, cloud_args): """merge_args""" args_dict = vars(args) if isinstance(cloud_args, dict): for key in cloud_args.keys(): val = cloud_args[key] if key in args_dict and val: arg_type = type(args_dict[key]) if arg_type is not type(None): val = arg_type(val) args_dict[key] = val return args def test(cloud_args=None): """test""" args = parse_args(cloud_args) context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, device_target=args.platform, save_graphs=False) if os.getenv('DEVICE_ID', "not_set").isdigit(): context.set_context(device_id=int(os.getenv('DEVICE_ID'))) # init distributed if args.is_distributed: if args.platform == "Ascend": init() elif args.platform == "GPU": init("nccl") args.rank = get_rank() args.group_size = get_group_size() parallel_mode = ParallelMode.DATA_PARALLEL context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size, parameter_broadcast=True, mirror_mean=True) else: args.rank = 0 args.group_size = 1 args.outputs_dir = os.path.join(args.log_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) args.logger = get_logger(args.outputs_dir, args.rank) args.logger.save_args(args) # network args.logger.important_info('start create network') if os.path.isdir(args.pretrained): models = list(glob.glob(os.path.join(args.pretrained, '*.ckpt'))) print(models) if args.graph_ckpt: f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('-')[-1].split('_')[0]) else: f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('_')[-1]) args.models = sorted(models, key=f) else: args.models = [args.pretrained,] for model in args.models: de_dataset = classification_dataset(args.data_dir, image_size=args.image_size, per_batch_size=args.per_batch_size, max_epoch=1, rank=args.rank, group_size=args.group_size, mode='eval') eval_dataloader = de_dataset.create_tuple_iterator() network = get_network(args.backbone, args.num_classes, platform=args.platform) if network is None: raise NotImplementedError('not implement {}'.format(args.backbone)) param_dict = load_checkpoint(model) param_dict_new = {} for key, values in param_dict.items(): if key.startswith('moments.'): continue elif key.startswith('network.'): param_dict_new[key[8:]] = values else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) args.logger.info('load model {} success'.format(model)) img_tot = 0 top1_correct = 0 top5_correct = 0 if args.platform == "Ascend": network.to_float(mstype.float16) else: auto_mixed_precision(network) network.set_train(False) t_end = time.time() it = 0 for data, gt_classes in eval_dataloader: output = network(Tensor(data, mstype.float32)) output = output.asnumpy() top1_output = np.argmax(output, (-1)) top5_output = np.argsort(output)[:, -5:] t1_correct = np.equal(top1_output, gt_classes).sum() top1_correct += t1_correct top5_correct += get_top5_acc(top5_output, gt_classes) img_tot += args.per_batch_size if args.rank == 0 and it == 0: t_end = time.time() it = 1 if args.rank == 0: time_used = time.time() - t_end fps = (img_tot - args.per_batch_size) * args.group_size / time_used args.logger.info('Inference Performance: {:.2f} img/sec'.format(fps)) results = [[top1_correct], [top5_correct], [img_tot]] args.logger.info('before results={}'.format(results)) if args.is_distributed: model_md5 = model.replace('/', '') tmp_dir = '/cache' if not os.path.exists(tmp_dir): os.mkdir(tmp_dir) top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format(args.rank, model_md5) top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format(args.rank, model_md5) img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format(args.rank, model_md5) np.save(top1_correct_npy, top1_correct) np.save(top5_correct_npy, top5_correct) np.save(img_tot_npy, img_tot) while True: rank_ok = True for other_rank in range(args.group_size): top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format(other_rank, model_md5) top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format(other_rank, model_md5) img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format(other_rank, model_md5) if not os.path.exists(top1_correct_npy) or not os.path.exists(top5_correct_npy) or \ not os.path.exists(img_tot_npy): rank_ok = False if rank_ok: break top1_correct_all = 0 top5_correct_all = 0 img_tot_all = 0 for other_rank in range(args.group_size): top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format(other_rank, model_md5) top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format(other_rank, model_md5) img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format(other_rank, model_md5) top1_correct_all += np.load(top1_correct_npy) top5_correct_all += np.load(top5_correct_npy) img_tot_all += np.load(img_tot_npy) results = [[top1_correct_all], [top5_correct_all], [img_tot_all]] results = np.array(results) else: results = np.array(results) args.logger.info('after results={}'.format(results)) top1_correct = results[0, 0] top5_correct = results[1, 0] img_tot = results[2, 0] acc1 = 100.0 * top1_correct / img_tot acc5 = 100.0 * top5_correct / img_tot args.logger.info('after allreduce eval: top1_correct={}, tot={},' 'acc={:.2f}%(TOP1)'.format(top1_correct, img_tot, acc1)) args.logger.info('after allreduce eval: top5_correct={}, tot={},' 'acc={:.2f}%(TOP5)'.format(top5_correct, img_tot, acc5)) if args.is_distributed: release() if __name__ == "__main__": test()