# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test nn.probability.distribution.Normal. """ import numpy as np import pytest import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import dtype from mindspore import Tensor def test_normal_shape_errpr(): """ Invalid shapes. """ with pytest.raises(ValueError): msd.Normal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32) def test_arguments(): """ args passing during initialization. """ n = msd.Normal() assert isinstance(n, msd.Distribution) n = msd.Normal([3.0], [4.0], dtype=dtype.float32) assert isinstance(n, msd.Distribution) class NormalProb(nn.Cell): """ Normal distribution: initialize with mean/sd. """ def __init__(self): super(NormalProb, self).__init__() self.normal = msd.Normal(3.0, 4.0, dtype=dtype.float32) def construct(self, value): prob = self.normal.prob(value) log_prob = self.normal.log_prob(value) cdf = self.normal.cdf(value) log_cdf = self.normal.log_cdf(value) sf = self.normal.survival_function(value) log_sf = self.normal.log_survival(value) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_normal_prob(): """ Test probability functions: passing value through construct. """ net = NormalProb() value = Tensor([0.5, 1.0], dtype=dtype.float32) ans = net(value) assert isinstance(ans, Tensor) class NormalProb1(nn.Cell): """ Normal distribution: initialize without mean/sd. """ def __init__(self): super(NormalProb1, self).__init__() self.normal = msd.Normal() def construct(self, value, mean, sd): prob = self.normal.prob(value, mean, sd) log_prob = self.normal.log_prob(value, mean, sd) cdf = self.normal.cdf(value, mean, sd) log_cdf = self.normal.log_cdf(value, mean, sd) sf = self.normal.survival_function(value, mean, sd) log_sf = self.normal.log_survival(value, mean, sd) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_normal_prob1(): """ Test probability functions: passing mean/sd, value through construct. """ net = NormalProb1() value = Tensor([0.5, 1.0], dtype=dtype.float32) mean = Tensor([0.0], dtype=dtype.float32) sd = Tensor([1.0], dtype=dtype.float32) ans = net(value, mean, sd) assert isinstance(ans, Tensor) class NormalKl(nn.Cell): """ Test class: kl_loss of Normal distribution. """ def __init__(self): super(NormalKl, self).__init__() self.n1 = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) self.n2 = msd.Normal(dtype=dtype.float32) def construct(self, mean_b, sd_b, mean_a, sd_a): kl1 = self.n1.kl_loss('Normal', mean_b, sd_b) kl2 = self.n2.kl_loss('Normal', mean_b, sd_b, mean_a, sd_a) return kl1 + kl2 def test_kl(): """ Test kl_loss. """ net = NormalKl() mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) ans = net(mean_b, sd_b, mean_a, sd_a) assert isinstance(ans, Tensor) class NormalCrossEntropy(nn.Cell): """ Test class: cross_entropy of Normal distribution. """ def __init__(self): super(NormalCrossEntropy, self).__init__() self.n1 = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) self.n2 = msd.Normal(dtype=dtype.float32) def construct(self, mean_b, sd_b, mean_a, sd_a): h1 = self.n1.cross_entropy('Normal', mean_b, sd_b) h2 = self.n2.cross_entropy('Normal', mean_b, sd_b, mean_a, sd_a) return h1 + h2 def test_cross_entropy(): """ Test cross entropy between Normal distributions. """ net = NormalCrossEntropy() mean_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) sd_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32) mean_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) sd_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) ans = net(mean_b, sd_b, mean_a, sd_a) assert isinstance(ans, Tensor) class NormalBasics(nn.Cell): """ Test class: basic mean/sd function. """ def __init__(self): super(NormalBasics, self).__init__() self.n = msd.Normal(3.0, 4.0, dtype=dtype.float32) def construct(self): mean = self.n.mean() sd = self.n.sd() mode = self.n.mode() entropy = self.n.entropy() return mean + sd + mode + entropy def test_bascis(): """ Test mean/sd/mode/entropy functionality of Normal. """ net = NormalBasics() ans = net() assert isinstance(ans, Tensor) class NormalConstruct(nn.Cell): """ Normal distribution: going through construct. """ def __init__(self): super(NormalConstruct, self).__init__() self.normal = msd.Normal(3.0, 4.0) self.normal1 = msd.Normal() def construct(self, value, mean, sd): prob = self.normal('prob', value) prob1 = self.normal('prob', value, mean, sd) prob2 = self.normal1('prob', value, mean, sd) return prob + prob1 + prob2 def test_normal_construct(): """ Test probability function going through construct. """ net = NormalConstruct() value = Tensor([0.5, 1.0], dtype=dtype.float32) mean = Tensor([0.0], dtype=dtype.float32) sd = Tensor([1.0], dtype=dtype.float32) ans = net(value, mean, sd) assert isinstance(ans, Tensor)