# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test nn.probability.distribution.Uniform. """ import numpy as np import pytest import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import dtype from mindspore import Tensor def test_uniform_shape_errpr(): """ Invalid shapes. """ with pytest.raises(ValueError): msd.Uniform([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32) def test_arguments(): """ Args passing during initialization. """ u = msd.Uniform() assert isinstance(u, msd.Distribution) u = msd.Uniform([3.0], [4.0], dtype=dtype.float32) assert isinstance(u, msd.Distribution) def test_invalid_range(): """ Test range of uniform distribution. """ with pytest.raises(ValueError): msd.Uniform(0.0, 0.0, dtype=dtype.float32) with pytest.raises(ValueError): msd.Uniform(1.0, 0.0, dtype=dtype.float32) class UniformProb(nn.Cell): """ Uniform distribution: initialize with low/high. """ def __init__(self): super(UniformProb, self).__init__() self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32) def construct(self, value): prob = self.u.prob(value) log_prob = self.u.log_prob(value) cdf = self.u.cdf(value) log_cdf = self.u.log_cdf(value) sf = self.u.survival_function(value) log_sf = self.u.log_survival(value) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_uniform_prob(): """ Test probability functions: passing value through construct. """ net = UniformProb() value = Tensor([3.1, 3.2, 3.3, 3.4], dtype=dtype.float32) ans = net(value) assert isinstance(ans, Tensor) class UniformProb1(nn.Cell): """ Uniform distribution: initialize without low/high. """ def __init__(self): super(UniformProb1, self).__init__() self.u = msd.Uniform(dtype=dtype.float32) def construct(self, value, low, high): prob = self.u.prob(value, low, high) log_prob = self.u.log_prob(value, low, high) cdf = self.u.cdf(value, low, high) log_cdf = self.u.log_cdf(value, low, high) sf = self.u.survival_function(value, low, high) log_sf = self.u.log_survival(value, low, high) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_uniform_prob1(): """ Test probability functions: passing low/high, value through construct. """ net = UniformProb1() value = Tensor([0.1, 0.2, 0.3, 0.9], dtype=dtype.float32) low = Tensor([0.0], dtype=dtype.float32) high = Tensor([1.0], dtype=dtype.float32) ans = net(value, low, high) assert isinstance(ans, Tensor) class UniformKl(nn.Cell): """ Test class: kl_loss of Uniform distribution. """ def __init__(self): super(UniformKl, self).__init__() self.u1 = msd.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) self.u2 = msd.Uniform(dtype=dtype.float32) def construct(self, low_b, high_b, low_a, high_a): kl1 = self.u1.kl_loss('Uniform', low_b, high_b) kl2 = self.u2.kl_loss('Uniform', low_b, high_b, low_a, high_a) return kl1 + kl2 def test_kl(): """ Test kl_loss. """ net = UniformKl() low_b = Tensor(np.array([0.0]).astype(np.float32), dtype=dtype.float32) high_b = Tensor(np.array([5.0]).astype(np.float32), dtype=dtype.float32) low_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) high_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) ans = net(low_b, high_b, low_a, high_a) assert isinstance(ans, Tensor) class UniformCrossEntropy(nn.Cell): """ Test class: cross_entropy of Uniform distribution. """ def __init__(self): super(UniformCrossEntropy, self).__init__() self.u1 = msd.Uniform(np.array([3.0]), np.array([4.0]), dtype=dtype.float32) self.u2 = msd.Uniform(dtype=dtype.float32) def construct(self, low_b, high_b, low_a, high_a): h1 = self.u1.cross_entropy('Uniform', low_b, high_b) h2 = self.u2.cross_entropy('Uniform', low_b, high_b, low_a, high_a) return h1 + h2 def test_cross_entropy(): """ Test cross_entropy between Unifrom distributions. """ net = UniformCrossEntropy() low_b = Tensor(np.array([0.0]).astype(np.float32), dtype=dtype.float32) high_b = Tensor(np.array([5.0]).astype(np.float32), dtype=dtype.float32) low_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) high_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) ans = net(low_b, high_b, low_a, high_a) assert isinstance(ans, Tensor) class UniformBasics(nn.Cell): """ Test class: basic mean/sd/var/mode/entropy function. """ def __init__(self): super(UniformBasics, self).__init__() self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32) def construct(self): mean = self.u.mean() sd = self.u.sd() var = self.u.var() entropy = self.u.entropy() return mean + sd + var + entropy def test_bascis(): """ Test mean/sd/var/mode/entropy functionality of Uniform. """ net = UniformBasics() ans = net() assert isinstance(ans, Tensor) class UniConstruct(nn.Cell): """ Unifrom distribution: going through construct. """ def __init__(self): super(UniConstruct, self).__init__() self.u = msd.Uniform(-4.0, 4.0) self.u1 = msd.Uniform() def construct(self, value, low, high): prob = self.u('prob', value) prob1 = self.u('prob', value, low, high) prob2 = self.u1('prob', value, low, high) return prob + prob1 + prob2 def test_uniform_construct(): """ Test probability function going through construct. """ net = UniConstruct() value = Tensor([-5.0, 0.0, 1.0, 5.0], dtype=dtype.float32) low = Tensor([-1.0], dtype=dtype.float32) high = Tensor([1.0], dtype=dtype.float32) ans = net(value, low, high) assert isinstance(ans, Tensor)