# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): def __init__(self, mul_weight, strategy1=None, strategy2=None): super().__init__() self.mul = P.Mul().shard(strategy1) self.mul2 = P.Mul().shard(strategy1) self.dropout_do_mask = P.DropoutDoMask().shard(strategy2) self.dropout_gen_mask = P.DropoutGenMask() self.get_shape = P.Shape() self.cast = P.Cast() self.mul_weight = Parameter(mul_weight, "w1") self.mul_weight2 = Parameter(mul_weight, "w2") self.keep_prob = Tensor(0.9) def construct(self, x, b): out = self.mul(x, self.mul_weight) shape = self.get_shape(out) dtype = P.DType()(out) keep_prob = self.cast(self.keep_prob, dtype) mask = self.dropout_gen_mask(shape, keep_prob) out = self.dropout_do_mask(out, mask, keep_prob) out = self.mul2(out, self.mul_weight2) return out _x = Tensor(np.ones([128, 64]), dtype=ms.float32) _w1 = Tensor(np.ones([128, 64]), dtype=ms.float32) _b = Tensor(np.ones([128, 64]), dtype=ms.float32) def compile_net(net): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _executor.compile(train_net, _x, _b) context.reset_auto_parallel_context() def test_dropout_do_mask_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((16, 1), (16, 1)) strategy2 = ((16, 1),) net = Net(_w1, strategy1, strategy2) compile_net(net) def test_dropout_do_mask_model_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((1, 16), (1, 16)) strategy2 = ((1, 16),) net = Net(_w1, strategy1, strategy2) compile_net(net) def test_dropout_do_mask_hybrid_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((4, 4), (4, 4)) strategy2 = ((4, 4),) net = Net(_w1, strategy1, strategy2) compile_net(net) def test_dropout_do_mask_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) net = Net(_w1) compile_net(net) def test_dropout_do_mask_repeat_calc(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((4, 4), (4, 4)) strategy2 = ((2, 4),) net = Net(_w1, strategy1, strategy2) compile_net(net)