# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return grad_all(self.network)(x, y, b) def compile_net(net, x, y, b): net.set_auto_parallel() _executor.compile(net, x, y, b) def test_matmul_tanh(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) self.tanh = P.Tanh().shard(strategy3) def construct(self, x, y, b): out = self.tanh(self.matmul1(x, y)) out = self.matmul2(out, b) return out strategy1 = ((16, 1), (1, 1)) strategy2 = ((1, 1), (1, 16)) strategy3 = ((4, 4),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(device_num=16, global_rank=0) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_activation(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) self.activation = P.ReLU().shard(strategy3) def construct(self, x, y, b): out = self.activation(self.matmul1(x, y)) out = self.matmul2(out, b) return out strategy1 = ((16, 1), (1, 1)) strategy2 = ((1, 1), (1, 16)) strategy3 = ((4, 4),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(device_num=16, global_rank=0) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_softmax(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) self.softmax = P.Softmax().shard(strategy3) def construct(self, x, y, b): out = self.softmax(self.matmul1(x, y)) out = self.matmul2(out, b) return out strategy1 = ((16, 1), (1, 1)) strategy2 = ((1, 1), (1, 16)) strategy3 = ((16, 1),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(device_num=16, global_rank=0) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_matmul_logsoftmax(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) self.logsoftmax = P.LogSoftmax().shard(strategy3) def construct(self, x, y, b): out = self.logsoftmax(self.matmul1(x, y)) out = self.matmul2(out, b) return out strategy1 = ((4, 2), (2, 2)) strategy2 = ((2, 4), (4, 2)) strategy3 = ((16, 1),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(device_num=16, global_rank=0) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_activations(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) self.gelu = P.Gelu().shard(strategy3) self.tanh = P.Tanh().shard(strategy3) self.softmax = P.Softmax().shard(strategy3) self.logsoftmax = P.LogSoftmax().shard(strategy3) def construct(self, x, y, b): out = self.gelu(self.tanh(self.matmul1(x, y))) out = self.logsoftmax(self.softmax(self.matmul2(out, b))) return out strategy1 = ((1, 2), (2, 2)) strategy2 = ((2, 2), (2, 1)) strategy3 = ((4, 1),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(device_num=4, global_rank=0) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_activations_repeated_calculation(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) self.gelu = P.Gelu().shard(strategy3) self.tanh = P.Tanh().shard(strategy4) self.softmax = P.Softmax().shard(strategy5) self.logsoftmax = P.LogSoftmax().shard(strategy6) def construct(self, x, y, b): out = self.gelu(self.tanh(self.matmul1(x, y))) out = self.logsoftmax(self.softmax(self.matmul2(out, b))) return out strategy1 = ((2, 4), (4, 8)) strategy2 = ((2, 2), (2, 1)) strategy3 = ((2, 1),) strategy4 = ((2, 2),) strategy5 = ((4, 1),) strategy6 = ((8, 1),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4, strategy5, strategy6))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(device_num=64, global_rank=0) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b) def test_activations_axis_tuple(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) self.gelu = P.Gelu().shard(strategy3) self.tanh = P.Tanh().shard(strategy4) self.softmax = P.Softmax(axis=(0, 1)).shard(strategy5) self.logsoftmax = P.LogSoftmax().shard(strategy6) def construct(self, x, y, b): out = self.gelu(self.tanh(self.matmul1(x, y))) out = self.logsoftmax(self.softmax(self.matmul2(out, b))) return out strategy1 = ((2, 4), (4, 8)) strategy2 = ((2, 2), (2, 1)) strategy3 = ((2, 1),) strategy4 = ((2, 2),) strategy5 = ((1, 1),) strategy6 = ((8, 1),) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4, strategy5, strategy6))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(device_num=64, global_rank=0) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile_net(net, x, y, b)