/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "common/common_test.h" #include "ops/assert.h" #include "ir/dtype/type.h" #include "ir/value.h" #include "abstract/dshape.h" #include "utils/tensor_construct_utils.h" namespace mindspore { namespace ops { namespace { template void SetTensorData(void *data, T num, size_t data_length) { MS_EXCEPTION_IF_NULL(data); auto tensor_data = reinterpret_cast(data); MS_EXCEPTION_IF_NULL(tensor_data); for (size_t index = 0; index < data_length; ++index) { *tensor_data = num; ++tensor_data; } } } // namespace class TestAssert : public UT::Common { public: TestAssert() {} void SetUp() {} void TearDown() {} }; TEST_F(TestAssert, test_ops_assert1) { auto assert = std::make_shared(); assert->Init(3); EXPECT_EQ(assert->get_summarize(), 3); std::vector inputs_ = {TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector{1})}; auto condition = MakeValue(std::vector{true}); auto inputs = std::make_shared(inputs_); auto abstract = assert->Infer({condition->ToAbstract(), inputs->ToAbstract()}); MS_EXCEPTION_IF_NULL(abstract); EXPECT_EQ(abstract->isa(), true); auto shape_ptr = abstract->BuildShape(); MS_EXCEPTION_IF_NULL(shape_ptr); EXPECT_EQ(shape_ptr->isa(), true); auto shape = shape_ptr->cast(); MS_EXCEPTION_IF_NULL(shape); auto shape_vec = shape->shape(); EXPECT_EQ(shape_vec.size(), 1); EXPECT_EQ(shape_vec[0], 1); auto type = abstract->BuildType(); MS_EXCEPTION_IF_NULL(type); EXPECT_EQ(type->isa(), true); auto tensor_type = type->cast(); MS_EXCEPTION_IF_NULL(tensor_type); auto data_type = tensor_type->element(); MS_EXCEPTION_IF_NULL(data_type); EXPECT_EQ(data_type->type_id(), kNumberTypeInt32); } TEST_F(TestAssert, test_ops_assert2) { auto assert = std::make_shared(); assert->Init(3); EXPECT_EQ(assert->get_summarize(), 3); std::vector inputs_ = {TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector{1})}; auto tensor = std::make_shared(kNumberTypeBool, std::vector{1}); MS_EXCEPTION_IF_NULL(tensor); auto mem_size = IntToSize(tensor->ElementsNum()); SetTensorData(tensor->data_c(), true, mem_size); auto inputs = std::make_shared(inputs_); auto abstract = assert->Infer({tensor->ToAbstract(), inputs->ToAbstract()}); MS_EXCEPTION_IF_NULL(abstract); EXPECT_EQ(abstract->isa(), true); auto shape_ptr = abstract->BuildShape(); MS_EXCEPTION_IF_NULL(shape_ptr); EXPECT_EQ(shape_ptr->isa(), true); auto shape = shape_ptr->cast(); MS_EXCEPTION_IF_NULL(shape); auto shape_vec = shape->shape(); EXPECT_EQ(shape_vec.size(), 1); EXPECT_EQ(shape_vec[0], 1); auto type = abstract->BuildType(); MS_EXCEPTION_IF_NULL(type); EXPECT_EQ(type->isa(), true); auto tensor_type = type->cast(); MS_EXCEPTION_IF_NULL(tensor_type); auto data_type = tensor_type->element(); MS_EXCEPTION_IF_NULL(data_type); EXPECT_EQ(data_type->type_id(), kNumberTypeInt32); } } // namespace ops } // namespace mindspore