# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluate Resnet50 on ImageNet""" import os import argparse from src.config import quant_set, config_quant, config_noquant from src.dataset import create_dataset from src.crossentropy import CrossEntropy from src.utils import _load_param_into_net from models.resnet_quant import resnet50_quant from mindspore import context from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint from mindspore.train.quant import quant parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--device_target', type=str, default='Ascend', help='Device target') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False) config = config_quant if quant_set.quantization_aware else config_noquant if args_opt.device_target == "Ascend": device_id = int(os.getenv('DEVICE_ID')) context.set_context(device_id=device_id) if __name__ == '__main__': # define fusion network net = resnet50_quant(class_num=config.class_num) if quant_set.quantization_aware: # convert fusion network to quantization aware network net = quant.convert_quant_network(net, bn_fold=True, per_channel=[True, False], symmetric=[True, False]) # define network loss if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropy(smooth_factor=config.label_smooth_factor, num_classes=config.class_num) # define dataset dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size, target=args_opt.device_target) step_size = dataset.get_dataset_size() # load checkpoint if args_opt.checkpoint_path: param_dict = load_checkpoint(args_opt.checkpoint_path) _load_param_into_net(net, param_dict) net.set_train(False) # define model model = Model(net, loss_fn=loss, metrics={'acc'}) print("============== Starting Validation ==============") res = model.eval(dataset) print("result:", res, "ckpt=", args_opt.checkpoint_path) print("============== End Validation ==============")