# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_imagenet.""" import argparse import os import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.context import ParallelMode from mindspore.communication.management import init, get_rank, get_group_size from mindspore.nn.optim.rmsprop import RMSProp from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.common.initializer import XavierUniform, initializer from mindspore.common import set_seed from src.config import config_gpu, config_ascend from src.dataset import create_dataset from src.inception_v3 import InceptionV3 from src.lr_generator import get_lr from src.loss import CrossEntropy set_seed(1) if __name__ == '__main__': parser = argparse.ArgumentParser(description='image classification training') parser.add_argument('--dataset_path', type=str, default='', help='Dataset path') parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint') parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training') parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform, save_graphs=False) if os.getenv('DEVICE_ID', "not_set").isdigit(): context.set_context(device_id=int(os.getenv('DEVICE_ID'))) cfg = config_ascend if args_opt.platform == 'Ascend' else config_gpu # init distributed if args_opt.is_distributed: init() cfg.rank = get_rank() cfg.group_size = get_group_size() parallel_mode = ParallelMode.DATA_PARALLEL context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=cfg.group_size, gradients_mean=True) else: cfg.rank = 0 cfg.group_size = 1 # dataloader dataset = create_dataset(args_opt.dataset_path, True, cfg.rank, cfg.group_size) batches_per_epoch = dataset.get_dataset_size() # network net = InceptionV3(num_classes=cfg.num_classes, dropout_keep_prob=cfg.dropout_keep_prob, has_bias=cfg.has_bias) # loss loss = CrossEntropy(smooth_factor=cfg.smooth_factor, num_classes=cfg.num_classes, factor=cfg.aux_factor) # learning rate schedule lr = get_lr(lr_init=cfg.lr_init, lr_end=cfg.lr_end, lr_max=cfg.lr_max, warmup_epochs=cfg.warmup_epochs, total_epochs=cfg.epoch_size, steps_per_epoch=batches_per_epoch, lr_decay_mode=cfg.decay_method) lr = Tensor(lr) # optimizer decayed_params = [] no_decayed_params = [] for param in net.trainable_params(): if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name: decayed_params.append(param) else: no_decayed_params.append(param) if args_opt.platform == "Ascend": for param in net.trainable_params(): if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name: param.set_data(initializer(XavierUniform(), param.data.shape, param.data.dtype)) group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay}, {'params': no_decayed_params}, {'order_params': net.trainable_params()}] optimizer = RMSProp(group_params, lr, decay=0.9, weight_decay=cfg.weight_decay, momentum=cfg.momentum, epsilon=cfg.opt_eps, loss_scale=cfg.loss_scale) eval_metrics = {'Loss': nn.Loss(), 'Top1-Acc': nn.Top1CategoricalAccuracy(), 'Top5-Acc': nn.Top5CategoricalAccuracy()} if args_opt.resume: ckpt = load_checkpoint(args_opt.resume) load_param_into_net(net, ckpt) if args_opt.platform == "Ascend": loss_scale_manager = FixedLossScaleManager(cfg.loss_scale, drop_overflow_update=False) model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={'acc'}, amp_level=cfg.amp_level, loss_scale_manager=loss_scale_manager) else: model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={'acc'}, amp_level=cfg.amp_level) print("============== Starting Training ==============") loss_cb = LossMonitor(per_print_times=batches_per_epoch) time_cb = TimeMonitor(data_size=batches_per_epoch) callbacks = [loss_cb, time_cb] config_ck = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=cfg.keep_checkpoint_max) save_ckpt_path = os.path.join(cfg.ckpt_path, 'ckpt_' + str(cfg.rank) + '/') ckpoint_cb = ModelCheckpoint(prefix=f"inceptionv3-rank{cfg.rank}", directory=save_ckpt_path, config=config_ck) if args_opt.is_distributed & cfg.is_save_on_master: if cfg.rank == 0: callbacks.append(ckpoint_cb) model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True) else: callbacks.append(ckpoint_cb) model.train(cfg.epoch_size, dataset, callbacks=callbacks, dataset_sink_mode=True) print("train success")