# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ ''' ##############evaluate trained models################# python export.py ''' import numpy as np from mindspore.train.serialization import export from mindspore import Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.musictagger import MusicTaggerCNN from src.config import music_cfg as cfg if __name__ == "__main__": network = MusicTaggerCNN(in_classes=[1, 128, 384, 768, 2048], kernel_size=[3, 3, 3, 3, 3], padding=[0] * 5, maxpool=[(2, 4), (4, 5), (3, 8), (4, 8)], has_bias=True) param_dict = load_checkpoint(cfg.checkpoint_path + "/" + cfg.model_name) load_param_into_net(network, param_dict) input_data = np.random.uniform(0.0, 1.0, size=[1, 1, 96, 1366]).astype(np.float32) export(network, Tensor(input_data), filename="{}/{}.air".format(cfg.checkpoint_path, cfg.model_name[:-5]), file_format="AIR")