# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import mindspore.dataset.transforms.vision.c_transforms as vision import numpy as np import matplotlib.pyplot as plt import mindspore.dataset as ds from mindspore import log as logger DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def visualize(image_original, image_cropped): """ visualizes the image using DE op and Numpy op """ num = len(image_cropped) for i in range(num): plt.subplot(2, num, i + 1) plt.imshow(image_original[i]) plt.title("Original image") plt.subplot(2, num, i + num + 1) plt.imshow(image_cropped[i]) plt.title("DE center_crop image") plt.show() def test_center_crop_op(height=375, width=375, plot=False): """ Test random_vertical """ logger.info("Test CenterCrop") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) decode_op = vision.Decode() # 3 images [375, 500] [600, 500] [512, 512] center_crop_op = vision.CenterCrop(height, width) data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=center_crop_op) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"]) data2 = data2.map(input_columns=["image"], operations=decode_op) image_cropped = [] image = [] for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): image_cropped.append(item1["image"].copy()) image.append(item2["image"].copy()) if plot: visualize(image, image_cropped) if __name__ == "__main__": test_center_crop_op() test_center_crop_op(600, 600) test_center_crop_op(300, 600) test_center_crop_op(600, 300)