# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """eval resnet.""" import argparse from mindspore import context from mindspore.common import set_seed from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.CrossEntropySmooth import CrossEntropySmooth from src.resnet import resnet152 as resnet from src.config import config5 as config from src.dataset import create_dataset2 as create_dataset parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--data_url', type=str, default=None, help='Dataset path') args_opt = parser.parse_args() set_seed(1) if __name__ == '__main__': target = "Ascend" # init context context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False) # create dataset local_data_path = args_opt.data_url print('Download data.') dataset = create_dataset(dataset_path=local_data_path, do_train=False, batch_size=config.batch_size, target=target) step_size = dataset.get_dataset_size() # define net net = resnet(class_num=config.class_num) ckpt_name = args_opt.checkpoint_path param_dict = load_checkpoint(ckpt_name) load_param_into_net(net, param_dict) net.set_train(False) # define loss, model if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropySmooth(sparse=True, reduction='mean', smooth_factor=config.label_smooth_factor, num_classes=config.class_num) # define model model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'}) # eval model res = model.eval(dataset) print("result:", res, "ckpt=", ckpt_name)