# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """unit tests for numpy array operations""" import functools import pytest import numpy as onp import mindspore.context as context import mindspore.numpy as mnp context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Cases(): def __init__(self): self.all_shapes = [ 0, 1, 2, (), (1,), (2,), (1, 2, 3), [], [1], [2], [1, 2, 3] ] self.onp_dtypes = [onp.int32, 'int32', int, onp.float32, 'float32', float, onp.uint32, 'uint32', onp.bool_, 'bool', bool] self.mnp_dtypes = [mnp.int32, 'int32', int, mnp.float32, 'float32', float, mnp.uint32, 'uint32', mnp.bool_, 'bool', bool] self.array_sets = [1, 1.1, True, [1, 0, True], [1, 1.0, 2], (1,), [(1, 2, 3), (4, 5, 6)], onp.random.random( # pylint: disable=no-member (100, 100)).astype(onp.float32), onp.random.random((100, 100)).astype(onp.bool)] self.arrs = [ rand_int(2), rand_int(2, 3), rand_int(2, 3, 4), rand_int(2, 3, 4, 5), ] # scalars expanded across the 0th dimension self.scalars = [ rand_int(), rand_int(1), rand_int(1, 1), rand_int(1, 1, 1), ] # arrays of the same size expanded across the 0th dimension self.expanded_arrs = [ rand_int(2, 3), rand_int(1, 2, 3), rand_int(1, 1, 2, 3), rand_int(1, 1, 1, 2, 3), ] # arrays with dimensions of size 1 self.nested_arrs = [ rand_int(1), rand_int(1, 2), rand_int(3, 1, 8), rand_int(1, 3, 9, 1), ] # arrays which can be broadcast self.broadcastables = [ rand_int(5), rand_int(6, 1), rand_int(7, 1, 5), rand_int(8, 1, 6, 1) ] # boolean arrays which can be broadcast self.bool_broadcastables = [ rand_bool(), rand_bool(1), rand_bool(5), rand_bool(6, 1), rand_bool(7, 1, 5), rand_bool(8, 1, 6, 1), ] self.mnp_prototypes = [ mnp.ones((2, 3, 4)), mnp.ones((0, 3, 0, 2, 5)), onp.ones((2, 7, 0)), onp.ones(()), [mnp.ones(3), (1, 2, 3), onp.ones(3), [4, 5, 6]], ([(1, 2), mnp.ones(2)], (onp.ones(2), [3, 4])), ] self.onp_prototypes = [ onp.ones((2, 3, 4)), onp.ones((0, 3, 0, 2, 5)), onp.ones((2, 7, 0)), onp.ones(()), [onp.ones(3), (1, 2, 3), onp.ones(3), [4, 5, 6]], ([(1, 2), onp.ones(2)], (onp.ones(2), [3, 4])), ] def match_array(actual, expected, error=0): if error > 0: onp.testing.assert_almost_equal(actual.tolist(), expected.tolist(), decimal=error) else: onp.testing.assert_equal(actual.tolist(), expected.tolist()) def check_all_results(onp_results, mnp_results, error=0): """Check all results from numpy and mindspore.numpy""" for i, _ in enumerate(onp_results): match_array(onp_results[i], mnp_results[i].asnumpy()) def check_all_unique_results(onp_results, mnp_results): """ Check all results from numpy and mindspore.numpy. Args: onp_results (Union[tuple of numpy.arrays, numpy.array]) mnp_results (Union[tuple of Tensors, Tensor]) """ for i, _ in enumerate(onp_results): if isinstance(onp_results[i], tuple): for j in range(len(onp_results[i])): match_array(onp_results[i][j], mnp_results[i][j].asnumpy(), error=7) else: match_array(onp_results[i], mnp_results[i].asnumpy(), error=7) def run_non_kw_test(mnp_fn, onp_fn): """Run tests on functions with non keyword arguments""" test_case = Cases() for i in range(len(test_case.arrs)): arrs = test_case.arrs[:i] match_res(mnp_fn, onp_fn, *arrs) for i in range(len(test_case.scalars)): arrs = test_case.scalars[:i] match_res(mnp_fn, onp_fn, *arrs) for i in range(len(test_case.expanded_arrs)): arrs = test_case.expanded_arrs[:i] match_res(mnp_fn, onp_fn, *arrs) for i in range(len(test_case.nested_arrs)): arrs = test_case.nested_arrs[:i] match_res(mnp_fn, onp_fn, *arrs) def rand_int(*shape): """return an random integer array with parameter shape""" res = onp.random.randint(low=1, high=5, size=shape) if isinstance(res, onp.ndarray): return res.astype(onp.float32) return float(res) # return an random boolean array def rand_bool(*shape): return onp.random.rand(*shape) > 0.5 def match_res(mnp_fn, onp_fn, *arrs, **kwargs): """Checks results from applying mnp_fn and onp_fn on arrs respectively""" mnp_arrs = map(functools.partial(mnp.asarray, dtype='float32'), arrs) mnp_res = mnp_fn(*mnp_arrs, **kwargs) onp_res = onp_fn(*arrs, **kwargs) match_all_arrays(mnp_res, onp_res) def match_all_arrays(mnp_res, onp_res, error=0): if isinstance(mnp_res, (tuple, list)): for actual, expected in zip(mnp_res, onp_res): match_array(actual.asnumpy(), expected, error) else: match_array(mnp_res.asnumpy(), onp_res, error) def match_meta(actual, expected): # float64 and int64 are not supported, and the default type for # float and int are float32 and int32, respectively if expected.dtype == onp.float64: expected = expected.astype(onp.float32) elif expected.dtype == onp.int64: expected = expected.astype(onp.int32) assert actual.shape == expected.shape assert actual.dtype == expected.dtype @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_asarray(): test_case = Cases() for array in test_case.array_sets: # Check for dtype matching actual = onp.asarray(array) expected = mnp.asarray(array).asnumpy() # Since we set float32/int32 as the default dtype in mindspore, we need # to make a conversion between numpy.asarray and mindspore.numpy.asarray if actual.dtype is onp.dtype('float64'): assert expected.dtype == onp.dtype('float32') elif actual.dtype is onp.dtype('int64'): assert expected.dtype == onp.dtype('int32') else: assert actual.dtype == expected.dtype match_array(actual, expected, error=7) for i in range(len(test_case.onp_dtypes)): actual = onp.asarray(array, test_case.onp_dtypes[i]) expected = mnp.asarray(array, test_case.mnp_dtypes[i]).asnumpy() match_array(actual, expected, error=7) # Additional tests for nested tensor/numpy_array mixture mnp_input = [(onp.ones(3,), mnp.ones(3)), [[1, 1, 1], (1, 1, 1)]] onp_input = [(onp.ones(3,), onp.ones(3)), [[1, 1, 1], (1, 1, 1)]] actual = onp.asarray(onp_input) expected = mnp.asarray(mnp_input).asnumpy() match_array(actual, expected, error=7) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_array(): # array's function is very similar to asarray, so we mainly test the # `copy` argument. test_case = Cases() for array in test_case.array_sets: arr1 = mnp.asarray(array) arr2 = mnp.array(arr1, copy=False) arr3 = mnp.array(arr1) arr4 = mnp.asarray(array, dtype='int32') arr5 = mnp.asarray(arr4, dtype=mnp.int32) assert arr1 is arr2 assert arr1 is not arr3 assert arr4 is arr5 # Additional tests for nested tensor/numpy_array mixture mnp_input = [(onp.ones(3,), mnp.ones(3)), [[1, 1, 1], (1, 1, 1)]] onp_input = [(onp.ones(3,), onp.ones(3)), [[1, 1, 1], (1, 1, 1)]] actual = onp.asarray(onp_input) expected = mnp.asarray(mnp_input).asnumpy() match_array(actual, expected, error=7) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_asfarray(): test_case = Cases() for array in test_case.array_sets: # Check for dtype matching actual = onp.asfarray(array) expected = mnp.asfarray(array).asnumpy() # Since we set float32/int32 as the default dtype in mindspore, we need # to make a conversion between numpy.asarray and mindspore.numpy.asarray if actual.dtype is onp.dtype('float64'): assert expected.dtype == onp.dtype('float32') else: assert actual.dtype == expected.dtype match_array(actual, expected, error=7) for i in range(len(test_case.onp_dtypes)): actual = onp.asfarray(array, test_case.onp_dtypes[i]) expected = mnp.asfarray(array, test_case.mnp_dtypes[i]).asnumpy() match_array(actual, expected, error=7) # Additional tests for nested tensor/numpy_array mixture mnp_input = [(onp.ones(3,), mnp.ones(3)), [[1, 1, 1], (1, 1, 1)]] onp_input = [(onp.ones(3,), onp.ones(3)), [[1, 1, 1], (1, 1, 1)]] actual = onp.asarray(onp_input) expected = mnp.asarray(mnp_input).asnumpy() match_array(actual, expected, error=7) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_zeros(): test_case = Cases() for shape in test_case.all_shapes: for i in range(len(test_case.onp_dtypes)): actual = onp.zeros(shape, test_case.onp_dtypes[i]) expected = mnp.zeros(shape, test_case.mnp_dtypes[i]).asnumpy() match_array(actual, expected) actual = onp.zeros(shape) expected = mnp.zeros(shape).asnumpy() match_array(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_ones(): test_case = Cases() for shape in test_case.all_shapes: for i in range(len(test_case.onp_dtypes)): actual = onp.ones(shape, test_case.onp_dtypes[i]) expected = mnp.ones(shape, test_case.mnp_dtypes[i]).asnumpy() match_array(actual, expected) actual = onp.ones(shape) expected = mnp.ones(shape).asnumpy() match_array(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_full(): actual = onp.full((2, 2), [1, 2]) expected = mnp.full((2, 2), [1, 2]).asnumpy() match_array(actual, expected) actual = onp.full((2, 0), onp.inf) expected = mnp.full((2, 0), mnp.inf).asnumpy() match_array(actual, expected) actual = onp.full((2, 3), True) expected = mnp.full((2, 3), True).asnumpy() match_array(actual, expected) actual = onp.full((3, 4, 5), 7.5) expected = mnp.full((3, 4, 5), 7.5).asnumpy() match_array(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_eye(): test_case = Cases() for i in range(len(test_case.onp_dtypes)): for m in range(1, 5): actual = onp.eye(m, dtype=test_case.onp_dtypes[i]) expected = mnp.eye(m, dtype=test_case.mnp_dtypes[i]).asnumpy() match_array(actual, expected) for n in range(1, 5): for k in range(0, 5): actual = onp.eye(m, n, k, dtype=test_case.onp_dtypes[i]) expected = mnp.eye( m, n, k, dtype=test_case.mnp_dtypes[i]).asnumpy() match_array(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_identity(): test_case = Cases() for i in range(len(test_case.onp_dtypes)): for m in range(1, 5): actual = onp.identity(m, dtype=test_case.onp_dtypes[i]) expected = mnp.identity(m, dtype=test_case.mnp_dtypes[i]).asnumpy() match_array(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_arange(): actual = onp.arange(10) expected = mnp.arange(10).asnumpy() match_array(actual, expected) actual = onp.arange(0, 10) expected = mnp.arange(0, 10).asnumpy() match_array(actual, expected) actual = onp.arange(start=10) expected = mnp.arange(start=10).asnumpy() match_array(actual, expected) actual = onp.arange(start=10, step=0.1) expected = mnp.arange(start=10, step=0.1).asnumpy() match_array(actual, expected, error=6) actual = onp.arange(10, step=0.1) expected = mnp.arange(10, step=0.1).asnumpy() match_array(actual, expected, error=6) actual = onp.arange(0.1, 9.9) expected = mnp.arange(0.1, 9.9).asnumpy() match_array(actual, expected, error=6) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_linspace(): actual = onp.linspace(2.0, 3.0, dtype=onp.float32) expected = mnp.linspace(2.0, 3.0).asnumpy() match_array(actual, expected, error=7) actual = onp.linspace(2.0, 3.0, num=5, dtype=onp.float32) expected = mnp.linspace(2.0, 3.0, num=5).asnumpy() match_array(actual, expected, error=7) actual = onp.linspace( 2.0, 3.0, num=5, endpoint=False, dtype=onp.float32) expected = mnp.linspace(2.0, 3.0, num=5, endpoint=False).asnumpy() match_array(actual, expected, error=7) actual = onp.linspace(2.0, 3.0, num=5, retstep=True, dtype=onp.float32) expected = mnp.linspace(2.0, 3.0, num=5, retstep=True) match_array(actual[0], expected[0].asnumpy()) assert actual[1] == expected[1] actual = onp.linspace(2.0, [3, 4, 5], num=5, endpoint=False, dtype=onp.float32) expected = mnp.linspace( 2.0, [3, 4, 5], num=5, endpoint=False).asnumpy() match_array(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_logspace(): actual = onp.logspace(2.0, 3.0, dtype=onp.float32) expected = mnp.logspace(2.0, 3.0).asnumpy() match_array(actual, expected) actual = onp.logspace(2.0, 3.0, num=5, dtype=onp.float32) expected = mnp.logspace(2.0, 3.0, num=5).asnumpy() match_array(actual, expected) actual = onp.logspace( 2.0, 3.0, num=5, endpoint=False, dtype=onp.float32) expected = mnp.logspace(2.0, 3.0, num=5, endpoint=False).asnumpy() match_array(actual, expected) actual = onp.logspace(2.0, [3, 4, 5], num=5, endpoint=False, dtype=onp.float32) expected = mnp.logspace( 2.0, [3, 4, 5], num=5, endpoint=False).asnumpy() match_array(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_empty(): test_case = Cases() for shape in test_case.all_shapes: for mnp_dtype, onp_dtype in zip(test_case.mnp_dtypes, test_case.onp_dtypes): actual = mnp.empty(shape, mnp_dtype).asnumpy() expected = onp.empty(shape, onp_dtype) match_meta(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_empty_like(): test_case = Cases() for mnp_proto, onp_proto in zip(test_case.mnp_prototypes, test_case.onp_prototypes): actual = mnp.empty_like(mnp_proto).asnumpy() expected = onp.empty_like(onp_proto) assert actual.shape == expected.shape for mnp_dtype, onp_dtype in zip(test_case.mnp_dtypes, test_case.onp_dtypes): actual = mnp.empty_like(mnp_proto, dtype=mnp_dtype).asnumpy() expected = onp.empty_like(onp_proto, dtype=onp_dtype) match_meta(actual, expected) def run_x_like(mnp_fn, onp_fn): test_case = Cases() for mnp_proto, onp_proto in zip(test_case.mnp_prototypes, test_case.onp_prototypes): actual = mnp_fn(mnp_proto).asnumpy() expected = onp_fn(onp_proto) match_array(actual, expected) for shape in test_case.all_shapes: actual = mnp_fn(mnp_proto, shape=shape).asnumpy() expected = onp_fn(onp_proto, shape=shape) match_array(actual, expected) for mnp_dtype, onp_dtype in zip(test_case.mnp_dtypes, test_case.onp_dtypes): actual = mnp_fn(mnp_proto, dtype=mnp_dtype).asnumpy() expected = onp_fn(onp_proto, dtype=onp_dtype) match_array(actual, expected) actual = mnp_fn(mnp_proto, dtype=mnp_dtype, shape=shape).asnumpy() expected = onp_fn(onp_proto, dtype=onp_dtype, shape=shape) match_array(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_ones_like(): run_x_like(mnp.ones_like, onp.ones_like) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_zeros_like(): run_x_like(mnp.zeros_like, onp.zeros_like) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_full_like(): test_case = Cases() for mnp_proto, onp_proto in zip(test_case.mnp_prototypes, test_case.onp_prototypes): shape = onp.zeros_like(onp_proto).shape fill_value = rand_int() actual = mnp.full_like(mnp_proto, fill_value).asnumpy() expected = onp.full_like(onp_proto, fill_value) match_array(actual, expected) for i in range(len(shape) - 1, 0, -1): fill_value = rand_int(*shape[i:]) actual = mnp.full_like(mnp_proto, fill_value).asnumpy() expected = onp.full_like(onp_proto, fill_value) match_array(actual, expected) fill_value = rand_int(1, *shape[i + 1:]) actual = mnp.full_like(mnp_proto, fill_value).asnumpy() expected = onp.full_like(onp_proto, fill_value) match_array(actual, expected) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_tri_triu_tril(): x = mnp.ones((16, 32), dtype="bool") match_array(mnp.tril(x).asnumpy(), onp.tril(x.asnumpy())) match_array(mnp.tril(x, -1).asnumpy(), onp.tril(x.asnumpy(), -1)) match_array(mnp.triu(x).asnumpy(), onp.triu(x.asnumpy())) match_array(mnp.triu(x, -1).asnumpy(), onp.triu(x.asnumpy(), -1)) x = mnp.ones((64, 64), dtype="uint8") match_array(mnp.tril(x).asnumpy(), onp.tril(x.asnumpy())) match_array(mnp.tril(x, 25).asnumpy(), onp.tril(x.asnumpy(), 25)) match_array(mnp.triu(x).asnumpy(), onp.triu(x.asnumpy())) match_array(mnp.triu(x, 25).asnumpy(), onp.triu(x.asnumpy(), 25)) match_array(mnp.tri(64, 64).asnumpy(), onp.tri(64, 64)) match_array(mnp.tri(64, 64, -10).asnumpy(), onp.tri(64, 64, -10)) def mnp_diagonal(arr): return mnp.diagonal(arr, offset=2, axis1=-1, axis2=0) def onp_diagonal(arr): return onp.diagonal(arr, offset=2, axis1=-1, axis2=0) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_diagonal(): arr = rand_int(0, 0) match_res(mnp.diagonal, onp.diagonal, arr, offset=1) arr = rand_int(3, 5) for i in [-10, -5, -1, 0, 2, 5, 6, 10]: match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=0, axis2=1) match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=1, axis2=0) arr = rand_int(7, 4, 9) for i in [-10, -5, -1, 0, 2, 5, 6, 10]: match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=0, axis2=-1) match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=-2, axis2=2) match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=-1, axis2=-2) arr = rand_int(2, 5, 8, 1) match_res(mnp_diagonal, onp_diagonal, arr) for i in [-10, -5, -1, 0, 2, 5, 6, 10]: match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=-3, axis2=2) match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=1, axis2=3) match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=0, axis2=-2) match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=2, axis2=-1) def mnp_trace(arr): return mnp.trace(arr, offset=4, axis1=1, axis2=2) def onp_trace(arr): return onp.trace(arr, offset=4, axis1=1, axis2=2) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_trace(): arr = rand_int(0, 0) match_res(mnp.trace, onp.trace, arr, offset=1) arr = rand_int(3, 5) for i in [-10, -5, -1, 0, 2, 5, 6, 10]: match_res(mnp.trace, onp.trace, arr, offset=i, axis1=0, axis2=1) match_res(mnp.trace, onp.trace, arr, offset=i, axis1=1, axis2=0) arr = rand_int(7, 4, 9) for i in [-10, -5, -1, 0, 2, 5, 6, 10]: match_res(mnp.trace, onp.trace, arr, offset=i, axis1=0, axis2=-1) match_res(mnp.trace, onp.trace, arr, offset=i, axis1=-2, axis2=2) match_res(mnp.trace, onp.trace, arr, offset=i, axis1=-1, axis2=-2) arr = rand_int(2, 5, 8, 1) match_res(mnp_trace, onp_trace, arr) for i in [-10, -5, -1, 0, 2, 5, 6, 10]: match_res(mnp.trace, onp.trace, arr, offset=i, axis1=-3, axis2=2) match_res(mnp.trace, onp.trace, arr, offset=i, axis1=1, axis2=3) match_res(mnp.trace, onp.trace, arr, offset=i, axis1=0, axis2=-2) match_res(mnp.trace, onp.trace, arr, offset=i, axis1=2, axis2=-1) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_asarray_exception(): with pytest.raises(TypeError): mnp.asarray({1, 2, 3}) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_linspace_exception(): with pytest.raises(TypeError): mnp.linspace(0, 1, num=2.5) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_empty_like_exception(): with pytest.raises(ValueError): mnp.empty_like([[1, 2, 3], [4, 5]])