# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing the rescale op in DE """ import mindspore.dataset as ds import mindspore.dataset.transforms.vision.c_transforms as vision from mindspore import log as logger from util import visualize_image, diff_mse, save_and_check_md5 DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" GENERATE_GOLDEN = False def rescale_np(image): """ Apply the rescale """ image = image / 255.0 image = image - 1.0 return image def get_rescaled(image_id): """ Reads the image using DE ops and then rescales using Numpy """ data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = vision.Decode() data1 = data1.map(input_columns=["image"], operations=decode_op) num_iter = 0 for item in data1.create_dict_iterator(num_epochs=1): image = item["image"] if num_iter == image_id: return rescale_np(image) num_iter += 1 return None def test_rescale_op(plot=False): """ Test rescale """ logger.info("Test rescale") data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # define map operations decode_op = vision.Decode() rescale_op = vision.Rescale(1.0 / 255.0, -1.0) # apply map operations on images data1 = data1.map(input_columns=["image"], operations=decode_op) data2 = data1.map(input_columns=["image"], operations=rescale_op) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1), data2.create_dict_iterator(num_epochs=1)): image_original = item1["image"] image_de_rescaled = item2["image"] image_np_rescaled = get_rescaled(num_iter) mse = diff_mse(image_de_rescaled, image_np_rescaled) assert mse < 0.001 # rounding error logger.info("image_{}, mse: {}".format(num_iter + 1, mse)) num_iter += 1 if plot: visualize_image(image_original, image_de_rescaled, mse, image_np_rescaled) def test_rescale_md5(): """ Test Rescale with md5 comparison """ logger.info("Test Rescale with md5 comparison") # generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) decode_op = vision.Decode() rescale_op = vision.Rescale(1.0 / 255.0, -1.0) # apply map operations on images data = data.map(input_columns=["image"], operations=decode_op) data = data.map(input_columns=["image"], operations=rescale_op) # check results with md5 comparison filename = "rescale_01_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) if __name__ == "__main__": test_rescale_op(plot=True) test_rescale_md5()