# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # """test_fbeta""" import numpy as np import pytest from mindspore import Tensor from mindspore.nn.metrics import get_metric_fn, Fbeta def test_classification_fbeta(): """test_classification_fbeta""" x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y = Tensor(np.array([1, 0, 1])) y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]])) metric = get_metric_fn('F1') metric.clear() metric.update(x, y) fbeta = metric.eval() fbeta_mean = metric.eval(True) fbeta2 = metric(x, y2) assert np.allclose(fbeta, np.array([2 / 3, 2 / 3])) assert np.allclose(fbeta2, np.array([2 / 3, 2 / 3])) assert np.allclose(fbeta_mean, 2 / 3) def test_fbeta_update1(): x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) y = Tensor(np.array([1, 0])) metric = Fbeta(2) metric.clear() with pytest.raises(ValueError): metric.update(x, y) def test_fbeta_update2(): x1 = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]])) y1 = Tensor(np.array([1, 0, 2])) x2 = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y2 = Tensor(np.array([1, 0, 2])) metric = Fbeta(2) metric.clear() metric.update(x1, y1) with pytest.raises(ValueError): metric.update(x2, y2) def test_fbeta_init(): with pytest.raises(ValueError): Fbeta(0) def test_fbeta_runtime(): metric = Fbeta(2) metric.clear() with pytest.raises(RuntimeError): metric.eval()