# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ut for batchnorm layer""" import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore.common.api import _executor def test_bn_pars_valid1(): """ut of BatchNorm parameters' validation""" with pytest.raises(ValueError): nn.BatchNorm2d(num_features=0) def test_bn_pars_valid2(): """ut of BatchNorm parameters' validation""" with pytest.raises(ValueError): nn.BatchNorm2d(num_features=3, momentum=-0.1) def test_bn_init(): """ut of BatchNorm parameters' validation""" bn = nn.BatchNorm2d(num_features=3) assert isinstance(bn.gamma, Parameter) assert isinstance(bn.beta, Parameter) assert isinstance(bn.moving_mean, Parameter) assert isinstance(bn.moving_variance, Parameter) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.bn = nn.BatchNorm2d(num_features=3) def construct(self, input_x): return self.bn(input_x) def test_compile(): net = Net() input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) _executor.compile(net, input_data) class GroupNet(nn.Cell): def __init__(self): super(GroupNet, self).__init__() self.group_bn = nn.GroupNorm() def construct(self, x): return self.group_bn(x) def test_compile_groupnorm(): net = nn.GroupNorm(16, 64) input_data = Tensor(np.random.rand(1, 64, 256, 256).astype(np.float32)) _executor.compile(net, input_data)