# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import time import mindspore.dataset as ds import mindspore.dataset.vision.c_transforms as vision from mindspore import log as logger DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" TF_FILES = ["../data/dataset/testTFTestAllTypes/test.data"] TF_SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json" def test_case_0(): """ Test Repeat """ # apply dataset operations data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) # define parameters repeat_count = 2 data = data.repeat(repeat_count) data = data.device_que() data.send() time.sleep(0.1) data.stop_send() def test_case_1(): """ Test Batch """ data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) # define data augmentation parameters resize_height, resize_width = 224, 224 # define map operations decode_op = vision.Decode() resize_op = vision.Resize((resize_height, resize_width)) # apply map operations on images data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=resize_op, input_columns=["image"]) batch_size = 3 data = data.batch(batch_size, drop_remainder=True) data = data.device_que() data.send() time.sleep(0.1) data.stop_send() def test_case_2(): """ Test Batch & Repeat """ data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) # define data augmentation parameters resize_height, resize_width = 224, 224 # define map operations decode_op = vision.Decode() resize_op = vision.Resize((resize_height, resize_width)) # apply map operations on images data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=resize_op, input_columns=["image"]) batch_size = 2 data = data.batch(batch_size, drop_remainder=True) data = data.repeat(2) data = data.device_que() assert data.get_repeat_count() == 2 data.send() time.sleep(0.1) data.stop_send() def test_case_3(): """ Test Repeat & Batch """ data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) # define data augmentation parameters resize_height, resize_width = 224, 224 # define map operations decode_op = vision.Decode() resize_op = vision.Resize((resize_height, resize_width)) # apply map operations on images data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=resize_op, input_columns=["image"]) data = data.repeat(2) batch_size = 2 data = data.batch(batch_size, drop_remainder=True) data = data.device_que() data.send() time.sleep(0.1) data.stop_send() def test_case_tf_file(): data = ds.TFRecordDataset(TF_FILES, TF_SCHEMA_FILE, shuffle=ds.Shuffle.FILES) data = data.to_device() data.send() time.sleep(0.1) data.stop_send() if __name__ == '__main__': logger.info('===========now test Repeat============') test_case_0() logger.info('===========now test Batch============') test_case_1() logger.info('===========now test Batch & Repeat============') test_case_2() logger.info('===========now test Repeat & Batch============') test_case_3() logger.info('===========now test tf file============') test_case_tf_file()