# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing RandomCrop op in DE """ import numpy as np import mindspore.dataset.transforms.py_transforms import mindspore.dataset.vision.c_transforms as c_vision import mindspore.dataset.vision.py_transforms as py_vision import mindspore.dataset.vision.utils as mode import mindspore.dataset as ds from mindspore import log as logger from util import save_and_check_md5, visualize_list, config_get_set_seed, \ config_get_set_num_parallel_workers GENERATE_GOLDEN = False DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def test_random_crop_op_c(plot=False): """ Test RandomCrop Op in c transforms """ logger.info("test_random_crop_op_c") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200]) decode_op = c_vision.Decode() data1 = data1.map(operations=decode_op, input_columns=["image"]) data1 = data1.map(operations=random_crop_op, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(operations=decode_op, input_columns=["image"]) image_cropped = [] image = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): image1 = item1["image"] image2 = item2["image"] image_cropped.append(image1) image.append(image2) if plot: visualize_list(image, image_cropped) def test_random_crop_op_py(plot=False): """ Test RandomCrop op in py transforms """ logger.info("test_random_crop_op_py") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms1 = [ py_vision.Decode(), py_vision.RandomCrop([512, 512], [200, 200, 200, 200]), py_vision.ToTensor() ] transform1 = mindspore.dataset.transforms.py_transforms.Compose(transforms1) data1 = data1.map(operations=transform1, input_columns=["image"]) # Second dataset # Second dataset for comparison data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms2 = [ py_vision.Decode(), py_vision.ToTensor() ] transform2 = mindspore.dataset.transforms.py_transforms.Compose(transforms2) data2 = data2.map(operations=transform2, input_columns=["image"]) crop_images = [] original_images = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): crop = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) crop_images.append(crop) original_images.append(original) if plot: visualize_list(original_images, crop_images) def test_random_crop_01_c(): """ Test RandomCrop op with c_transforms: size is a single integer, expected to pass """ logger.info("test_random_crop_01_c") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: If size is an int, a square crop of size (size, size) is returned. random_crop_op = c_vision.RandomCrop(512) decode_op = c_vision.Decode() data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=random_crop_op, input_columns=["image"]) filename = "random_crop_01_c_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_01_py(): """ Test RandomCrop op with py_transforms: size is a single integer, expected to pass """ logger.info("test_random_crop_01_py") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: If size is an int, a square crop of size (size, size) is returned. transforms = [ py_vision.Decode(), py_vision.RandomCrop(512), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) filename = "random_crop_01_py_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_02_c(): """ Test RandomCrop op with c_transforms: size is a list/tuple with length 2, expected to pass """ logger.info("test_random_crop_02_c") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: If size is a sequence of length 2, it should be (height, width). random_crop_op = c_vision.RandomCrop([512, 375]) decode_op = c_vision.Decode() data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=random_crop_op, input_columns=["image"]) filename = "random_crop_02_c_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_02_py(): """ Test RandomCrop op with py_transforms: size is a list/tuple with length 2, expected to pass """ logger.info("test_random_crop_02_py") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: If size is a sequence of length 2, it should be (height, width). transforms = [ py_vision.Decode(), py_vision.RandomCrop([512, 375]), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) filename = "random_crop_02_py_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_03_c(): """ Test RandomCrop op with c_transforms: input image size == crop size, expected to pass """ logger.info("test_random_crop_03_c") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The size of the image is 4032*2268 random_crop_op = c_vision.RandomCrop([2268, 4032]) decode_op = c_vision.Decode() data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=random_crop_op, input_columns=["image"]) filename = "random_crop_03_c_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_03_py(): """ Test RandomCrop op with py_transforms: input image size == crop size, expected to pass """ logger.info("test_random_crop_03_py") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The size of the image is 4032*2268 transforms = [ py_vision.Decode(), py_vision.RandomCrop([2268, 4032]), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) filename = "random_crop_03_py_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_04_c(): """ Test RandomCrop op with c_transforms: input image size < crop size, expected to fail """ logger.info("test_random_crop_04_c") # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The size of the image is 4032*2268 random_crop_op = c_vision.RandomCrop([2268, 4033]) decode_op = c_vision.Decode() data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=random_crop_op, input_columns=["image"]) try: data.create_dict_iterator(num_epochs=1).__next__() except RuntimeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "crop size is bigger than the image dimensions" in str(e) def test_random_crop_04_py(): """ Test RandomCrop op with py_transforms: input image size < crop size, expected to fail """ logger.info("test_random_crop_04_py") # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The size of the image is 4032*2268 transforms = [ py_vision.Decode(), py_vision.RandomCrop([2268, 4033]), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) try: data.create_dict_iterator(num_epochs=1).__next__() except RuntimeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "Crop size" in str(e) def test_random_crop_05_c(): """ Test RandomCrop op with c_transforms: input image size < crop size but pad_if_needed is enabled, expected to pass """ logger.info("test_random_crop_05_c") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The size of the image is 4032*2268 random_crop_op = c_vision.RandomCrop([2268, 4033], [200, 200, 200, 200], pad_if_needed=True) decode_op = c_vision.Decode() data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=random_crop_op, input_columns=["image"]) filename = "random_crop_05_c_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_05_py(): """ Test RandomCrop op with py_transforms: input image size < crop size but pad_if_needed is enabled, expected to pass """ logger.info("test_random_crop_05_py") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The size of the image is 4032*2268 transforms = [ py_vision.Decode(), py_vision.RandomCrop([2268, 4033], [200, 200, 200, 200], pad_if_needed=True), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) filename = "random_crop_05_py_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_06_c(): """ Test RandomCrop op with c_transforms: invalid size, expected to raise TypeError """ logger.info("test_random_crop_06_c") # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) try: # Note: if size is neither an int nor a list of length 2, an exception will raise random_crop_op = c_vision.RandomCrop([512, 512, 375]) decode_op = c_vision.Decode() data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=random_crop_op, input_columns=["image"]) except TypeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "Size should be a single integer" in str(e) def test_random_crop_06_py(): """ Test RandomCrop op with py_transforms: invalid size, expected to raise TypeError """ logger.info("test_random_crop_06_py") # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) try: # Note: if size is neither an int nor a list of length 2, an exception will raise transforms = [ py_vision.Decode(), py_vision.RandomCrop([512, 512, 375]), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) except TypeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "Size should be a single integer" in str(e) def test_random_crop_07_c(): """ Test RandomCrop op with c_transforms: padding_mode is Border.CONSTANT and fill_value is 255 (White), expected to pass """ logger.info("test_random_crop_07_c") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The padding_mode is default as Border.CONSTANT and set filling color to be white. random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], fill_value=(255, 255, 255)) decode_op = c_vision.Decode() data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=random_crop_op, input_columns=["image"]) filename = "random_crop_07_c_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_07_py(): """ Test RandomCrop op with py_transforms: padding_mode is Border.CONSTANT and fill_value is 255 (White), expected to pass """ logger.info("test_random_crop_07_py") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The padding_mode is default as Border.CONSTANT and set filling color to be white. transforms = [ py_vision.Decode(), py_vision.RandomCrop(512, [200, 200, 200, 200], fill_value=(255, 255, 255)), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) filename = "random_crop_07_py_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_08_c(): """ Test RandomCrop op with c_transforms: padding_mode is Border.EDGE, expected to pass """ logger.info("test_random_crop_08_c") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The padding_mode is Border.EDGE. random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE) decode_op = c_vision.Decode() data = data.map(operations=decode_op, input_columns=["image"]) data = data.map(operations=random_crop_op, input_columns=["image"]) filename = "random_crop_08_c_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_08_py(): """ Test RandomCrop op with py_transforms: padding_mode is Border.EDGE, expected to pass """ logger.info("test_random_crop_08_py") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Note: The padding_mode is Border.EDGE. transforms = [ py_vision.Decode(), py_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=mode.Border.EDGE), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) filename = "random_crop_08_py_result.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_random_crop_09(): """ Test RandomCrop op: invalid type of input image (not PIL), expected to raise TypeError """ logger.info("test_random_crop_09") # Generate dataset data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms = [ py_vision.Decode(), py_vision.ToTensor(), # Note: if input is not PIL image, TypeError will raise py_vision.RandomCrop(512) ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data = data.map(operations=transform, input_columns=["image"]) try: data.create_dict_iterator(num_epochs=1).__next__() except RuntimeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "should be PIL image" in str(e) def test_random_crop_comp(plot=False): """ Test RandomCrop and compare between python and c image augmentation """ logger.info("Test RandomCrop with c_transform and py_transform comparison") cropped_size = 512 # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) random_crop_op = c_vision.RandomCrop(cropped_size) decode_op = c_vision.Decode() data1 = data1.map(operations=decode_op, input_columns=["image"]) data1 = data1.map(operations=random_crop_op, input_columns=["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms = [ py_vision.Decode(), py_vision.RandomCrop(cropped_size), py_vision.ToTensor() ] transform = mindspore.dataset.transforms.py_transforms.Compose(transforms) data2 = data2.map(operations=transform, input_columns=["image"]) image_c_cropped = [] image_py_cropped = [] for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True), data2.create_dict_iterator(num_epochs=1, output_numpy=True)): c_image = item1["image"] py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image_c_cropped.append(c_image) image_py_cropped.append(py_image) if plot: visualize_list(image_c_cropped, image_py_cropped, visualize_mode=2) if __name__ == "__main__": test_random_crop_01_c() test_random_crop_02_c() test_random_crop_03_c() test_random_crop_04_c() test_random_crop_05_c() test_random_crop_06_c() test_random_crop_07_c() test_random_crop_08_c() test_random_crop_01_py() test_random_crop_02_py() test_random_crop_03_py() test_random_crop_04_py() test_random_crop_05_py() test_random_crop_06_py() test_random_crop_07_py() test_random_crop_08_py() test_random_crop_09() test_random_crop_op_c(True) test_random_crop_op_py(True) test_random_crop_comp(True)