# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pytest import mindspore.nn as nn from mindspore import context from mindspore.common.tensor import Tensor from mindspore.common.initializer import TruncatedNormal from mindspore.common.parameter import ParameterTuple from mindspore.ops import operations as P from mindspore.ops import composite as C from mindspore.train.serialization import export def weight_variable(): return TruncatedNormal(0.02) def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) class LeNet5(nn.Cell): def __init__(self): super(LeNet5, self).__init__() self.batch_size = 32 self.conv1 = conv(1, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.reshape = P.Reshape() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.reshape(x, (self.batch_size, -1)) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x class WithLossCell(nn.Cell): def __init__(self, network): super(WithLossCell, self).__init__(auto_prefix=False) self.loss = nn.SoftmaxCrossEntropyWithLogits() self.network = network def construct(self, x, label): predict = self.network(x) return self.loss(predict, label) class TrainOneStepCell(nn.Cell): def __init__(self, network): super(TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.set_train() self.weights = ParameterTuple(network.trainable_params()) self.optimizer = nn.Momentum(self.weights, 0.1, 0.9) self.hyper_map = C.HyperMap() self.grad = C.GradOperation(get_by_list=True) def construct(self, x, label): weights = self.weights grads = self.grad(self.network, weights)(x, label) return self.optimizer(grads) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_export_lenet_grad_mindir(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") network = LeNet5() network.set_train() predict = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.zeros([32, 10]).astype(np.float32)) net = TrainOneStepCell(WithLossCell(network)) export(net, predict, label, file_name="lenet_grad", file_format='MINDIR') verify_name = "lenet_grad.mindir" assert os.path.exists(verify_name)